

Subject: Applied MEchanics (22203)

SYLLABUS

Chapter No.	Name of chapter	Marks
1	Mechanics and Force System	6
2	Simple Lifting Machine	12
3	Resolution and Composition	14
4	Equilibrium	14
5	Friction	12
6	Centroid and Centre of Gravity	12
	Total Marks: -	70

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

BOARD THEORY PAPER

PATTERN

Q.1		Attempt any FIVE	5*2=10
	a)	Resolution and Composition	
	b)	Simple Lifting Machine	
	c)	Mechanics and Force System	
	d)	Equilibrium	
	e)	Friction	
	f)	Centroid and Centre of Gravity	
	g)	Equilibrium	
Q.2		Attempt any THREE	3*4=12
	a)	Resolution and Composition	
	b)	Simple Lifting Machine	
	c)	Simple Lifting Machine	
	d)	Friction	
Q.3		Attempt any THREE	3*4=12
	a)	Resolution and Composition	
	b)	Resolution and Composition	
	c)	Simple Lifting Machine	
	d)	Simple Lifting Machine	
Q.4		Attempt any THREE	3*4=12
	a)	Resolution and Composition	
	b)	Equilibrium	

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	c)	Equilibrium
	d)	Friction
	e)	Equilibrium
Q.5		Attempt anyTWO2*6=12
	a)	Equilibrium
	b)	Friction
	c)	Resolution and Composition
Q.6		Attempt any TWO2*6=12
	a)	Centroid and Centre of Gravity
	b)	Centroid and Centre of Gravity
	c)	Centroid and Centre of Gravity

CLASS TEST - I

PAPER PATTERN

COURSE: -Applied Mechanics (22203)

PROGRAMME: -Mechanical engineering

Syllabus: -

Unit	Name of the Unit	Course Outcome
190.		(00)
1	Mechanics and Force System	CO-203.01
2	Resolution and Composition	CO-203.03
3	Equilibrium	CO-203.04

Q.1	Attempt any FOUR 4*2=8Marks	Course Outcome (CO)
a)	Mechanics and Force System	CO-203.01
b)	Resolution and Composition	CO-203.03
c)	Mechanics and Force System	CO-203.01
d)	Equilibrium	CO-203.04
e)	Equilibrium	CO-203.04
f)	Resolution and Composition	CO-203.03

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

Q.2	Attempt any THREE3*4= 12Mark	s
a)	Resolution and Composition	CO-203.03
b)	Resolution and Composition	CO-203.03
c)	Mechanics and Force System	CO-203.01
d)	Equilibrium	CO-203.04

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

CLASS TEST - II

PAPER PATTERN

COURSE: -Applied Mechanics (22203)

PROGRAMME: -Mechanical engineering

		Course Outcome
Unit	Name of the Unit	(CO)
No.		
4	Friction	CO-203.05
5	Centroid and Centre of Gravity	CO-203.06
2	Simple Lifting Machine	CO-203.02

Q.1	Attempt any FOUR	4*2= 8Marks	Course Outcome (CO)
a)	Friction		CO-203.05
b)	Centroid and Centre of Gravity		CO-203.06
c)	Friction		CO-203.05
d)	Centroid and Centre of Gravity		CO-203.06
e)	Simple Lifting Machine		CO-203.02
f)	Simple Lifting Machine		CO-203.02
Q.2	Attempt any THREE	3*4= 12Marks	
a)	Friction		CO-203.05
b)	Centroid and Centre of Gravity		CO-203.06

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

c)	Centroid and Centre of Gravity	CO-203.06
d)	Simple Lifting Machine	CO-203.02

COURSE OUTCOME (CO)

COURSE: -Applied Mechanics(22203)

PROGRAMME: -Mechanical Engineering

CO.NO.	Course Outcome
CO-203.01	Select relevant material in industry by analyzing it's physical properties
CO-203.02	Apply laws of motion in various applications
CO-203.03	Apply laws of motion in various applications
CO-203.04	Select relevant Metallurgical process realted to industrial application.
CO-203.05	Select relevant water treatment process to solve industrial problems.
CO-203.06	Use relevant fuel in relevent application.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

1. Mechanics and Force System

Position in Question Paper

Total Marks-06

Q.1. a) 2-Marks.

Q.1. b) 2-Marks.

Q.2. a) 2-Marks.

Descriptive Question

- 1. State principle of transmissibility of force.
- 2. Define unlike parallel force system and general force system with sketch.
- 3. Find the angle between two equal forces of magnitude 300 N each, if their resultant is 150 N
- 4. State law of Parallelogram of forces.
- 5. Write relation between resultant and equilibrant.
- 6. Define force and state its effects.
- 7. Define Statics and Dynamics.

MCQ Question

1

(Total number of Question=Marks*3=06*3=18)

Note: Correct answer is marked with **bold.**

Which of the following conditions should be satisfied for co-planer concurrent forces to

be in equilibrium?	
a) $\Sigma Fx = \Sigma Fy = 0$	c) Both a) and b)
b) $\Sigma M = 0$	d) None of the above

² If a body in equilibrium condition is acted by three forces at three points, then the line of action of these forces should be

	a) always concurrent	c) concurrent or parallel
	b) always parallel	d) none of the above
3	Two forces act an angle of 120°. If the greate	r force is 50 kg and their resultant is
perpendicular to the smaller force, the smaller force is		
	a) 20 kg	c) 30 kg
	b) 25 kg	d) 35 kg

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- 4 The necessary condition of equilibrium of a body is:
 - a) Algebraic sum of horizontal components of all the forces must be zero
 - b) Algebraic sum of vertical components of all the forces must be zero
 - c) Algebraic sum of the moments of the forces about a point must be zero
 - d) All (a), (b) and (c)

⁵ If the body is under equilibrium under the influence of a set of non-colinear force, then theminimum number of forces has to be

a) Two

6

9

c) Fourd) Five

- b) Three
- According to Lami's theorem which of the following statements is true?
 - a) Three forces acting at a point will be in equilibrium.

b) Three forces acting upon a particle will be in equilibrium if they are represented in magnitude and direction by the sides of a triangle, taken in order.

C) If three forces acting at a point are in equilibrium, each force is proportional to the sine of the angle between the other two.

d) Three forces acting at a point can be represented by a triangle, each side being proportional to the force.

⁷ What is the dot product of two vectors which are having a magnitude equal to unity and are making an angle of 45° ?

a) -0.707	c) -1.414
b) 0.707	d) 1.414

8 The Law of Polygon of Forces states that

a) if a polygen representing the forces acting at point in a body is closed, the forces are in equilibrium

b) if forces acting on a point can be represented in magnitude and direction by the sides of a polygon taken in order, then the resultant of the forces will be represented in magnitude and direction by the closing side of the polygon

c) if forces acting on a point can be represented of a polygon taken in order, their sides of a polygon taken in order, their resultant will be represented in magnitude and direction by the closing side of the polygon, taken in opposite order

d) if forces acting on a point can be represented in magnitude and direction by the sides of a polygon in order, the forces are in equilibrium.

A force of 250N acts at on angle of 80 degree with x-axis .find its components along 1650 and 3300

a)-962.25N,-907.67N b)-856.25N,770.14N

```
d)856.25N,-770.14N
```

c)962.25N,907.67N

10 The resultant of two equal forces P making an angle 2θ is given by a) $2P\sin\theta$ c) $2P\tan\theta$

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b) 2Pcosθ	d) 2Pcotθ
11	Varignon's theorem is used to find	
	a) direction of resultant force	c) magnitude of resultant force
	b) location of resultant force	d) nature of resultant force
12	What is the angle made by force A with X or Y ?(w	here X and Y are components of
12	force A) *	
	a) 75.520	c) 14.030
	b) 60.650	d) 14.470
13	The maximum and minimum magnitude of resultan	t forces is 1000 N and 500 N at point.
	a) 500 N 500 N	c) 300 N 700 N
	b) 450 N 550 N	d) 250 N 750 N
14	Couple is formed due to two	a) 25011, 75011
17	a) like parallel and non-collinear forces of same ma	agnitude
	b) like, perpendicular and collinear forces of differe	ent magnitude
	c) unlike, parallel and non-collinear forces of sar	ne magnitude
	d) unlike, perpendicular and non-collinear forces of	different magnitude
15 What are the X and Y components of point P for the force system shown below?		e force system shown below?
	a) $X = 186.00 \text{ N}, Y = 464 \text{ N}$	c) $X = 466.12 \text{ N}, Y = -180 \text{ N}$
	b) $X = 464.23 \text{ N}, Y = 185 \text{ N}$	d) None of the above
16	If two concurrent forces A and B acting on a point a	are 200 N and 300 N. What is the
10	magnitude of resultant force, if it makes an angle of	500 with each force?
	a) 471.08 N	c) 400.56 N
	b) 455.12 N	d) Insufficient data
The method of splitting a single force into two perpendicular co		endicular components along x-axis
	and y-axis is called as a) orthogonal resolution	c) both a) and b)
	h) perpendicular resolution	d) none of the above
10	Find the angle between two force 120N each such the	hat their resultant is 60N
10	a) Angle-151 04 deg	c) $Angle = 154.04 deg$
	b) Angle $-152.04 \deg$	d)Angle $-153.04 \deg$
	0) migic -152.04 deg	α_{JI} single -155.04 deg

2. Simple Lifting Machine

Position in Question Paper

Total Marks-12

Q.2. a) 4-Marks.

Q.3. a) 4-Marks.

Q.3. d) 4-Marks.

Descriptive Question

- 1. A solid cone of 500 mm height and 200 mm base diameter. The portion above half of its height is removed. Locate the point at which remaining body can be balanced.
- 2. In a machine, an effort required to lift a certain load is 200 N. When efficiency is 60% find the ideal effort.
- 3. What are the characteristic of ideal machine?
- 4. The diameter of bigger and smaller Pulley's of Weston's differential pulley block are 250 mm and 100 mm respectively. Determine effort required to lift a load of 3 KN with 80% efficiency.
- 5. A machine has V.R. of 250 and has its law P = (0.01W + 5) N, Find M.A., efficiency, effort lost in friction at a load of 1000 N and also state whether machine is reversible or not.
- 6. Define ideal machine and state law of machine for it with help of sketch.
- 7. A screw jack having 5 mm pitch and has 300 mm as diameter of effort wheel is used to lift a load of 80 kN. Find V.R. and effort required it efficiency of machine is 40%.
- 8. In a machine load of 500 N was lifted by an effort 50 N, Another load of 750 N was lifted by an effort of 60 N. Obtain law of machine.
- 9. Calculate effort lost in friction and load lost in friction, it machine lifts a load of 100 N by an effort of 8 N at an efficiency of 60%.
- 10.Explain law of machine. State it's use.
- 11.State ideal machine and write it's any two characteristics.

MCQ Question

(Total number of Question=Marks*3=12*3=36)

Note: Correct answer is marked with **bold**.

	A simple machinne has point of appl	ication of effort and one
1	ponit for load)	
	a) 1	c) 3
	b) 2	d)4
2	Mechanical advantage is the ratio of	_lifted to the effort applied)
	a) weight	c) all the above
	b) effort	d) none of these
3	of a machine is the work done on the	machine.
	a) velocity ratio	c) out put
	b) input	d) none of these
4	is the ratio of the distance moved by the moved by the load)	he effort to the distance
	a) velocity ratio	c) out put
	b) input	d) none of these
5	of a machine is the actual work done	by the machine.
	a) velocity ratio	c) out put
	b) input	d) none of these
6	According to newton's second law of motion;	P=
	a) MA	c) MT
	b) MV	d) none of these
7	A machine is said to be if its efficienc	y 100%.
	a) ideal	c) compound
	b) perfect	d) none of these
8	The first law of motion supplies the defination	n of
	a) momentum	c) energy
	b) force	d) pressure
9	Momentum of a moving mass is the amount o	f
	a) energy possesed by a body	c) inertia possesed by a body
	b) motion possesed by a body	d) work possesed by a body

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

10	Momentum of body is given by the relation	
	a) force*distance	c) mass*time
	b) mass*velocity	d) mass*acceleration
11	Fulcrum is the of a lever.	
	a) fixed part	c) can't say
	b) moving part	d) Sliding Part
12	Lever consists of parts.	
	a) two	c) four
	b) three	d) none of these
13	Lever helps in	
	a) moving the objects	c) all of the above
	b) lifting the objects	d) Sliding Part
14	Nail cutter is a class lever.	
	a) first	c) third
	b) second	d) fifth
15	Lemon squeezer is a class lever.	
	a) first	c) third
	b) second	d) Sliding Part
16	Scissors is a class lever.	
	a) first	c) third
	b) second	d) fifth
17	Stapler is a class lever.	
	a) first	c) third
	b) second	d) fifth
18	Stair case is a/an	
	a) lever	c) wheel and axle
	b) inclined plane	d) none of these
19	In case of third class lever, the sequence is :	
	a) effort, load, fulcrum	c) fulcrum, effort,
		load
	b) fulcrum, load, effort	d) load, fulcrum,
20	In case of second class lever, the sequence is :	enon
20	a) fulcrum, load, effort	b) load, fulcrum.
	.,	effort
	b) fulcrum, effort, load	d) fifth

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

21	In case of first class lever, the sequence is :	
	a) fulcrum, load, effort	b) load, fulcrum,
		effort
	b) fulcrum, effort, load	d) fifth
22	Mechanical advantage is	
	a) load/effort	c) load+effort
	b) effort/load	d) load-effort
23	Efficiency of a simple machine is	
	a) effort applied on the machine / work done by	c) none of these
	the machine	(1 1 •
	b) work done by the machine / effort applied of	n the machine
23	Bottle openers is a lever.	、 .
	a) first lever	c) third class
	b) second class	d) fifth
24	For second class lever mechanical advantage is	•
	a) always less than 1	c) always equal to 1
	b) always greater than 1	d) always equal to 2
25	Sewing machine is a machine.	
	a) simple	c) none of these
	b) complex	d) Sructure
	A machine raised a load of 360 N through a distant	nce of 200 mm. The
26	effort, a force of 60 N moved 1.8 m during the pro-	ocess. Calculate
	mechanical advantage.	
	a) 6	c) 8
	b) 7	d) 9
07	A machine raised a load of 360 N through a distar	nce of 200 mm. The
27	effort, a force of 60 N moved 1.8 m during the pro	beess. Calculate velocity
	a) 6	c) 8
	b) 7	0 (9
	A machine raised a load of 360 N through a distant	\mathbf{u}
28	effort, a force of 60 N moved 1.8 m during the pro-	ocess. Calculate
-0	efficiency at this load)	
	a) 44.44%	c) 66.66%
	b) 55.55%	d) 77.77%
	A machine raised a load of 360 N through a distar	nce of 200 mm. The
29	effort, a force of 60 N moved 1.8 m during the pro-	ocess. Calculate effect
	of friction.	
Prepa	red By: Prof.M.S.Aware(Mechanical Dept.)	

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. **RSM POLY** Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

20

20

20

	a) 10 N	c) 30 N
	b) 20 N	d) 40 N
30	In a lifting machine, the effort required to lift loads were 50N and 60N respectively. If the velocity rate determine law of the machine	s of 200N and 300N io of the machine is 2
	a) $\mathbf{P} = 1/10\mathbf{W} \pm 30$	c) $P = 1/30W \pm 30$
	a) $I = 1/10$ W + 30 b) $D = 1/20$ W + 20	c) $I = 1/30W + 30$ d) $D = 1/40W + 20$
	D) P = 1/20W + 50	(1) P = 1/40 W + 30
31	were 50N and 60N respectively. If the velocity rat determine efficiency to load of 200 N.	io of the machine is 2
	a) 10 %	c) 20 %
	b) 15 %	d) 25 %
32	In a lifting machine, the effort required to lift loads were 50N and 60N respectively. If the velocity rate determine efficiency to load of 300 N.	s of 200N and 300N io of the machine is 2
	a) 10 %	c) 20 %
	b) 15 %	d) 25 %
33	A machine has velocity ratio 30, determine the effected of 100N if efficiency of the machine is 30%.	ort required to lift a
	a) 11.11N	c) 13.13N
	b) 12.12N	d) 14.14N
34	At a certain machine an effort of 18N lifts a load of efficiency of 65%. Find the effort	f 100 N at an
	a) 6.29	c) 5.28
	b) 2.36	d) 9.25
35	In a certain lifting machine an effort of 2N lifts a leftort lost due to friction at this load is 0.5N. effici a) 75	load of 30N.If the ency of machine. b) 50
	c) 78	d) 40
36	A machine lifts a load of 400 N by effort of 60 N. by effort of 80 N. Find the law of Machine.	It lifts load of 600 N
	a) P=0.1 W+20 N	c) P=0.1 W+40 N
	b) P=0.1 W+30 N	d) P=0.2 W+40 N

3. Resolution and Composition

Position in Question Paper

Total Marks-14

Q.2. d) 2-Marks. Q.5. d) 6-Marks.

Q.6. d) 6-Marks.

Descriptive Question

1. A concurrent force system is shown in Figure No. 7 find graphically the resultant of this force system.

2. Calculate the resultant and it's position wrt. point A for the force system shown in Figure No. 2. AB = BC = CA = 2m

- 3. Find the angle between two equal forces of magnitude 300 N each, if their resultant is 150 N.
- 4. Find analytically the resultant of following concurrent force system. Refer to Figure No

5. Find analytically the resultant of following concurrent force system

- 6. Define unlike parallel force system and general force system with sketch.
- 7. State principle of transmisibility of force.
- 8. Define resultant force
- 9. Locate the resultant with magnitude and direction for a parallel force system

10.Locate the resultant with magnitude and direction for a parallel force system

MCQ Question

(Total number of Question=Marks*3=14*3=42)

1	A force of 10 N is making an angle of 30 $^\circ$ with	the horizontal. Its
	horizontal component will be	-) 7 NI
	a) 4 N	c) / N
•	b) 5 N	d) 10 N
2	A man is pulling a trolley on a horizontal road v with the read. The horizontal and vertical comp	with a force of 100 N making 45 °
	with the road. The nonzontal and vertical composition $a_1 > 52.5 \text{ N}$ 85.09 N	c) 60 3 N 54 11 N
	b) 55 6 N 78 6 N	d) 70 N 29 23 N
3	Splitting up of a force into two mutually perpen	dicular components is called the
C	a) determination of that force	c) resolution of that force
	b) subtraction of the forces	d) line of action of that force
4	The number of perpendicular components of for	rce are
	a) 1	c) 2
	b) 3	d) 4
5	The number of perpendicular components of a f	orce are
	a) 1	c) 3
	b) 2	d) 4
6	The process of finding out the resultant force is	known as
	a) Superposition of forces	c) Resolution of forces
	b) Addition of forces	d) Composition of forces
7	The resultant of two forces which are acting at a	an angle θ is
	a) $(P2-Q2+2PQCos\theta)1/2$	c) (P2-Q2+2PQSin0)1/2
	b) (P2+Q2+2PQCos θ)1/2	d) (P2+Q2+2PQSinθ)1/2
8	The resultant of two equal forces P making an a	ngle 2θ is given by
	a) 2Psinθ	c) 2Ptan0
	b) 2Pcosθ	d) 2Pcot θ
9	The resultant for a number of forces acting at a	point, is given by
	a) $(\Sigma V)2$ - $(\Sigma H)2$	c) [(ΣV)2-(ΣH)2]1/2
	b) $(\Sigma V)2+(\Sigma H)2$	d) [(ΣV)2+(ΣH)2]1/2
10	The forces which meet at a point and their lines	of action lie in the same plane and
	known as	
	a) Non-coplanar non concurrent forces	c) non-copianar concurrent forces

RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai. d) Coplanar concurrent forces b) Coplanar non concurrent forces The angle between two forces when the resultant is maximum and minimum 11 respectively are a) 0? and 180? c) 180? and 0? b) 90? and 180? d) 90? and 0? 12 If the resultant of two equal forces has the same magnitude as either of the forces, then angle between the two forces is a) 30? c) 60? b) 90? d) 120? 13 Concurrent forces are those forces whose lines of action a) lie on the same line c) meet at one point b) meet on the same plane d) none of these 14 The forces, which meet at one point and their lines of action also lie on the same plane, are known as a) coplaner concurrent forces c) coplaner non-concurrent forces b) non-coplaner concurrent forces d) non-coplaner non-concurrent The forces which do not meet at one point and their lines of action do not lie on the 15 same plane are known as a) coplaner concurrent forces c) coplaner non-concurrent forces b) non-coplaner concurrent forces d) none of these 16 Coplaner concurrent forces are those forces which a) meet at one point, but their lines of action do not lie on the same plane b) meet at one point and their lines of action also lie on the same plane c) do not meet at one point and their lines of action do not lie on the same plane d) do not meet at one point, but their lines of action lie on the same plane 17 Two like parallel forces are acting at a distance of 24 mm apart and their resultant is 20 N. If the line of action of the resultant is 6 mm from any given force the two forces are a) 15 N and 5 N c) 20 N and 5 N

Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

Maratha Vidya Prasarak Samaj's

18 Three forces acting on a rigid body are represented in magnitude, direction and line of action by the three sides of a triangle taken in order. The forces are equivalent to a couple whose moment is equal to

d) none of these

b) 15 N and 10 N

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

a) area of the triangle

c) twice the area of the triangle

b) half the area of the triangle

d) none of these

19 The moment axis, force and the perpendicular distance in the moment of the force calculation is lying in_____

a) Two planes perpendicular to each other

- b) A single plane in the direction of the force
- c) A single plane in the direction of the perpendicular distance
- d) A single line in the direction of the force
- 20 If the rotation is clockwise in this page, suppose, then in which direction will the thumb project if you curl your hand in the same direction of the rotation?

a) It will point to the direction perpendicular to the plane of the paper and towards you

b) It will point to the direction perpendicular to the plane of the paper and away from you

c) It will point to the direction parallel to the plane of the paper and towards right

- d) It will point to the direction parallel to the plane of the paper and towards left
- 21 Which of the following is true?

a) Total moment of various forces acting on the body is the vector sum of all moments

b) Total moment of various forces acting on the body is the algebraic sum of all moments

c) Total moment of various forces acting on the body is always zero

d) Total moment of various forces acting on the body is the vector sum of all moments which is perpendicular to each other forces

- 22 The ______ forces do not cause the rotation.
- a) Non-concurrentb) Concurrent

```
d) Non-Parallel
```

c) Parallel

23 Which of the following is true?

a) Total moment of various forces acting on the body is the vector sum of all moments in 3D

b) Total moment of various forces acting on the body is the algebraic sum of all moments in 3D

c) Total moment of various forces acting on the body is always zero in any dimension

d) Total moment of various forces acting on the body is the vector sum of all moments which is perpendicular to each other forces whatever be the dimensions

24 A force of 50 N acting tangentially to a circle of radius 6 m. Its moment about diametrically opposite point will be _____.

(a) 150 Nm

Prepared By: Prof.M.S.Aware(Mechanical Dept.)

(c) 60 Nm

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	(b) 600 Nm	(d) 300 Nm
25	Which of the following conditions	should be satisfied for co-planer concurrent forces
	to be in equilibrium?	
	a) $\Sigma Fx = \Sigma Fy = 0$	c) Both a) and b)
	b) $\Sigma M = 0$	d) None of the above
26	If a body in equilibrium condition line of action of these forces shoul	is acted by three forces at three points, then the d be
	a) always concurrent	c) concurrent or parallel
	b) always parallel	d) none of the above
27	Two forces act an angle of 120°. If	the greater force is 50 kg and their resultant is
	perpendicular to the smaller force,	the smaller force is
	a) 20 kg	c) 30 kg
	b) 25 kg	d) 35 kg
28	The necessary condition of equilib	rium of a body is:
	a) Algebraic sum of horizontal con	nponents of all the forces must be zero
	b) Algebraic sum of vertical comp	onents of all the forces must be zero
	c) Algebraic sum of the moments of	of the forces about a point must be zero
	d) All (a), (b) and (c)	-
29	If the body is under equilibrium under the influence of a set of non-colinear force, then the minimum number of forces has to be	
	a) Two	c) Four
	b) Three	d) Five
30	According to Lami's theorem which	ch of the following statements is true?
	a) Three forces acting at a point wi	Ill be in equilibrium.
	b) Three forces acting upon a parti	cle will be in equilibrium if they are represented in
	c) If three forces acting at a point are in equilibrium each force is proportional	
	to the sine of the angle between the other two.	
	d) Three forces acting at a point ca	in be represented by a triangle, each side being
	proportional to the force.	
31	What is the dot product of two vec	tors which are having a magnitude equal to unity
	and are making an angle of 45°?	
	a) -0.707	c) -1.414
	b) 0.707	d) 1.414
32	The Law of Polygon of Forces stat	es that
	a) if a polygen representing the for are in equilibrium	ces acting at point in a body is closed, the forces

b) if forces acting on a point can be represented in magnitude and direction by the

sides of a polygon taken in order, then the resultant of the forces will be represented in magnitude and direction by the closing side of the polygon

c) if forces acting on a point can be represented of a polygon taken in order, their sides of a polygon taken in order, their resultant will be represented in magnitude and direction by the closing side of the polygon, taken in opposite order

d) if forces acting on a point can be represented in magnitude and direction by the sides of a polygon in order, the forces are in equilibrium.

- 33 A force of 250N acts at on angle of 80 degree with x-axis .find its components along 1650 and 3300
- a)-962.25N,-907.67N c)962.25N,907.67N b)-856.25N,770.14N d)856.25N,-770.14N The resultant of two equal forces P making an angle 2θ is given by 34 a) $2P\sin\theta$ c) 2Ptan θ b) 2Pcosθ d) 2Pcot0 35 Varignon's theorem is used to find a) direction of resultant force c) magnitude of resultant force b) location of resultant force d) nature of resultant force 36 What is the angle made by force A with X or Y ?(where X and Y are components of force A) a) 75.520 c) 14.03o b) 60.650 d) 14.470 The maximum and minimum magnitude of resultant forces is 1000 N and 500 N at 37 point. What are the values of two forces acting on it? a) 500 N, 500 N c) 300 N, 700 N b) 450 N, 550 N d) 250 N, 750 N 38 Couple is formed due to two a) like, parallel and non-collinear forces of same magnitude b) like, perpendicular and collinear forces of different magnitude c) unlike, parallel and non-collinear forces of same magnitude d) unlike, perpendicular and non-collinear forces of different magnitude 39 What are the X and Y components of point P for the force system shown below? a) X = 186.00 N, Y = 464 Nc) X = 466.12 N, Y = -180 N
- b) X = 464.23 N, Y = 185 N
 d) None of the above
 40 If two concurrent forces A and B acting on a point are 200 N and 300 N. What is the magnitude of resultant force, if it makes an angle of 500 with each force?
 - a) 471.08 N
 - b) 455.12 N

- c) 400.56 N
- d) Insufficient data

- 41 The method of splitting a single force into two perpendicular components along xaxis and y-axis is called as
 - a) orthogonal resolution

c) both a) and b)

b) perpendicular resolution

- d) none of the above
- 42 Find the angle between two force 120N each, such that their resultant is 60N
 - a) Angle=151.04 deg

c) Angle=154.04 deg

b) Angle=152.04 deg

d) Angle=157.04 deg

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

4. Equilibrium

Position in Question Paper

Total Marks-14

Q.4. b) 4-Marks. Q.3. d) 4-Marks. Q.6. d) 6-Marks.

Descriptive Question

1. Calculate reactions offered by surface as shown in Figure , if a cylinder weighing 1000 N is resting on inclined surfaces at 90° and 50° with horizontal

- 2. State Lami's theorem.
- 3. State any two types of beam along with sketch.
- 4. Calculate the tension induced in the cable used for the assembly shown in Figure W = 1500 N.

5. Calculate the reaction of beam loaded as shown in Figure

6. Calculate the reaction of beam loaded as shown in Figure

7. Calculate the reaction of beam loaded as shown in Figure

8. Calculate the reaction of beam loaded as shown in Figure

9. Calculate the reaction of beam loaded as shown in Figure

10.Calculate the reaction of beam loaded as shown in Figure No. use graphical method

11.Calculate the reaction of beam loaded as shown in Figure No.use graphical method

MCQ Question

(Total number of Question=Marks*3=14*3=42)

Note: Correct answer is marked with **bold.**

1	If a body in equilibrium condition is acted by three forces at three points, then the line	
	of action of these forces should be	a) concurrent or perellel
	a) always concurrent	
	b) always parallel	d) none of the above
2	According to Lami's theorem, a body is in eq three_ are proportional to sine angle between	uilibrium condition if each force among other two.
	a) coplanar, collinear forces	c) coplanar, non-concurrent forces
	b) collinear, non-concurrent forces	d) coplanar, concurrent forces
3	Cantilever beam has one end	and other end
	a) hinged, free	c) fixed, hinged
	b) fixed, free	d) none of the above
4	The necessary condition of equilibrium of a b	oody is: *
	a) Algebraic sum of horizontal components0	c) Algebraic sum of the moments 0
	b) Algebraic sum of vertical components zero	d) All (a), (b) and (c)
⁵ Three coplanar forces A, B and C acting at a point in the plane are		point in the plane are in equilibrium. If the
5	given value of A is 1.9318 kg wt and $\sin\theta$ 1 is	0.9659, what is the value of C?
	∖ 1	
	a) 1	c) 0.9659
	a) 1 b) 2	 c) 0.9659 d) ¹/₂
6	a) 1b) 2A body under the action of coplanar forces X	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in
6	a) 1b) 2A body under the action of coplanar forces X the figure. Which of the following is the correct	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ect statement? *
6	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the corre a) P/sin a =Q/sin B =R/sin r 	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ect statement? * c) Both
6	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the corre a) P/sin a =Q/sin B =R/sin r b) P/sin r =Q/sin a =R/sin r 	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ect statement? * c) Both d) None of the above
6 7	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the corre a) P/sin a =Q/sin B =R/sin r b) P/sin r =Q/sin a =R/sin r If the body is under equilibrium under the inf theminimum number of forces has to be * 	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in act statement? * c) Both d) None of the above luence of a set of non- colinear force, then
6 7	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the corre a) P/sin a =Q/sin B =R/sin r b) P/sin r =Q/sin a =R/sin r If the body is under equilibrium under the inf theminimum number of forces has to be * a) Two 	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ext statement? * c) Both d) None of the above luence of a set of non- colinear force, then c) Four
6 7	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the correr a) P/sin a =Q/sin B =R/sin r b) P/sin r =Q/sin a =R/sin r If the body is under equilibrium under the inf theminimum number of forces has to be * a) Two b) Three 	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ext statement? * c) Both d) None of the above luence of a set of non- colinear force, then c) Four d) Five
6 7 8	 a) 1 b) 2 A body under the action of coplanar forces X the figure. Which of the following is the corre a) P/sin a =Q/sin B =R/sin r b) P/sin r =Q/sin a =R/sin r If the body is under equilibrium under the inf theminimum number of forces has to be * a) Two b) Three According to Lami's theorem which of the formation o	 c) 0.9659 d) ¹/₂ , Y and Z, is in equilibrium as shown in ext statement? * c) Both d) None of the above luence of a set of non- colinear force, then c) Four d) Five bllowing statements is true? *

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	 b) Three forces acting upon a particle will be represented in magnitude and direction by c) If three forces acting at a point are in equilities in the other two. d) Three forces acting at a point can be represented at a	be in equilibrium if they are the sides of a triangle, taken in order. brium, each force is proportional to the
	d) Three forces acting at a point can be repres	ented by a triangle, each side being
9	A 30 kg iron block is suspended using suppor is the tension in both ropes? *	ts A and B as shown in the figure. What
	a) 263.566 N and 215.2 N	c) 663.566 N and 615.2 N
	b) 463.566 N and 415.2 N	d) 863.566 N and 815.2 N
10	The maximum and minimum magnitude of re point. What are the values of two forces acting	sultant forces is 1000 N and 500 N at g on it? *
	a) 500 N, 500 N	c) 300 N, 700 N
	b) 450 N, 550 N	d) 250 N, 750 N
11	If two concurrent forces A and B acting on a p magnitude of resultant force, if it makes an an	point are 200 N and 300 N. What is the gle of 500 with each force?
	a) 4/1.08 N	c) 400.56 N
	b) 455.12 N	d. Insufficient data
12	reaction RA of the hinged support A of the be	am, is *
	a) 10.8 t	c) 10.4 t
	b) 10.6 t	d) 10.2 t.
13	A Weight 100 N is attached by two string. cal	culate the tension in the string
	a) T1= 50N, T2= 86.60 N	b) T1= 60N, T2= 86.60 N
	b) T1= 50N, T2= 80.60 N	c) T1= 50N, T2= 96.60 N
14	A sphere having 300 mm as radius and 1000	N as weight against a well and
	on a inclined planeas shown in fig. Calculate plane.	the reactions given by the wall and the
	a) RA= 363.97N, RB= 1064.18N	c) RA= 363.97N, RB= 1164.18N
	b) RA= 263.97N, RB= 1064.18N	d) RA= 383.97N, RB= 1064.18N
15	Find the beam Reactions *	
	a) 1.94 KN, 2.84 KN	c) 3.94 KN, 3.84 KN
	b) 2.94 KN, 4.84 KN	d) 11.94 KN, 10.84 KN
16	A beam AB of 9m span is simply supported a 2kN upwards at 2m from. A And uniformly d downwards on a length of 6m form B. Determ	t the ends. The Beam carries point load of istributed load of 1000N/m nine the support reactions analytically.
	a) 8.33N, 4.66N	c) 9.33N, 70.66N

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b) 8.33N, 5.66N	d) 5.33N, 8.66N
	An electric bulb of weight 10N hangs vertic	ally from a ceiling. Its wire is pulled by a
17	17 horizontal force 'P' such that its wire will make an angle of with vertical. Find force	
	'P' and tension in wire. *	
	a) $T = 10.15N, P = 1.76N$	c) $T = 10.15N, P = 2.76N$
	b) $T = 12.15N, P = 1.76N$	d) $T = 22.15N, P = 12.76N$
10	Six parallel forces of magnitude 1 kN,1.5	kN,1.8 kN,2.0 kN,2.4 kN and 2.7 kN are
18	acting at 1,3,5,7,8m from first force. For	tes of first third and fifth are acting
	upwards while other are acting downwar a) $\mathbf{R}_{-1}\mathbf{K}\mathbf{N}$	$c) \mathbf{P} = 1 \mathbf{K} \mathbf{N}$
	b) $R=-10KN$	d) $R=10KN$
	Calculate resultant in magnitude direction	an and position with respect to 40kN
19	force for the parallel force system shown	fig. *
	a) R=35KN	c) R=40KN
	b) R=-35KN	d) R=-40KN
20	Varignon's theorem is used to find	
	a) direction of resultant force	c) magnitude of resultant force
	b) location of resultant force	d) nature of resultant force
01	What is the angle made by force A with X or Y? (where X and Y are components of	
21	force A)	· · ·
	a) 75.520	c) 14.03o
	b) 60.650	d) 14.470
2.2	The maximum and minimum magnitude of resultant forces is 1000 N and 500 N at	
	point. What are the values of two forces act	ing on it?
	a) 500 N, 500 N	c) 300 N, 700 N
	b) 450 N, 550 N	d) 250 N, 750 N
23	Couple is formed due to two	
	a) like, parallel and non-collinear forces of	same magnitude
	b) like, perpendicular and collinear forces o	f different magnitude
	c) unlike, parallel and non-collinear force	es of same magnitude
	d) unlike, perpendicular and non-collinear f	orces of different magnitude
24	What are the X and Y components of point	P for the force system shown below?
	a) $X = 186.00 N, Y = 464 N$	c) $X = 466.12 \text{ N}, Y = -180 \text{ N}$
	b) $X = 464.23 \text{ N}, Y = 185 \text{ N}$	d) None of the above
25	If two concurrent forces A and B acting on	a point are 200 N and 300 N. What is the
	magnitude of resultant force, if it makes an	angle of 500 with each force?
	a) 4/1.08 N	c) 400.56 N
	b) 455.12 N	a) Insufficient data
Prepa	ared By: Prof.M.S.Aware(Mechanical Dept.)	Page 31 of 48

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. **RSM POLY** Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- The method of splitting a single force into two perpendicular components along x-axis 26 and y-axis is called as
 - a) orthogonal resolution

c) both a) and b)

b) perpendicular resolution

d) none of the above

- 27 Find the angle between two force 120N each, such that their resultant is 60N
 - a) Angle=151.04 deg

c) Angle=154.04 deg

b) Angle=152.04 deg

d) Angle=157.04 deg

How is the weight of the aeroplane flying in the air balanced? 28

a) The weight is balanced because of the force due to the pressure difference between the upper and lower surfaces of the wings created by different airspeeds on the surfaces.

b) The weight is balanced due to the vertical component of the thrust created by air currents striking the lower surface of the wings

c) The weight is balanced due to the force produced when the reactions of gases are ejected by the revolving propellor.

d) Upthrust of the air which will be equal to the weight of the air having the same volume as the plane

Which of the following is true when a body is stationary? 29

a) The force acting on it is not in contact with it

b) The body is in vacuum

c) There is no force acting on it

d) The combination of forces acting on it balance each other

Two forces with magnitude F have the resultant of same magnitude F. What is the 30 angle between the forces?

a) 450	c) 1200
b) 600	d) 1500

What is the angle between the forces if two forces with equal magnitudes F act on a 31 body and the magnitude of the resultant force is F/3?

a. cos-1(17/18)	c) $\cos^{-1}(8/19)$
b. $\cos(-1(2/3))$	d) $\cos(-1/3)$

In which direction should the force be applied to balance a force in the direction of 32 North-East direction?

a) South	c) South-West
b) West	d) North-East

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- 33 Among the following which cannot be a resultant force of 5 N and 10 N?
 - a) 4 N c) 8 N d) 12 N
- The resultant of the two forces are perpendicular to the smaller of the two forces. The magnitude of one of the forces is double the magnitude of the other force. What is the angle between the forces?

a) 600	c) 1200
b) 900	d) 1500

35 Which of the following sets of concurrent forces are in equilibrium?

a. F1=3N,F2=5N,F3=1N	c) F1=3N,F2=5N,F3=9N
b) F1=3N,F2=5N,F3=6N	d) F1=3N,F2=5N,F3=15N

Two blocks connected to each other by a string is hung to the ceiling by connecting another string to the upper block. When a force F is applied on the string, it produces

36 an acceleration of 2 m/s2. If T and T' are the tensions in two parts of the string, then which of the following is true?

a) T = 70.8 N and T'= 47.2 N	c) T = 70.8 N and T'= 58.8 N
b) T = 70.8 N and T'= 0	d) T = 58.8 N and T'= 47.2 N

For the conditions of the equilibrium of the body, i.e. the rigid body only the externalforces defines the equilibrium. Because the internal forces cancels out so not to be considered.

- a) The first part of the statement is false and other part is true
- b) The first part of the statement is false and other part is false too

c) The first part of the statement is true and other part is false

d) The first part of the statement is true and other part is true too

38 Which of the following needs to zero for the perfect equilibrium?

a) ∑	F=0,	∑М=0	and	$\sum \theta =$	0
------	------	------	-----	-----------------	---

b)
$$\Sigma F=0$$
, $\Sigma M\neq 0$ and $\Sigma \theta = 0$

- 39 D' Alembert's principle is used for
 - a) Reducing the problem of kinetics
 - b) Determining stresses in the truss
- 40 A heavy ladder resting on floor and against a vertical wall may not be in equilibrium, ifa) The floor is smooth, the wall is roughc) The floor and wall both are smooth
 - b) The floor is rough, the wall is smooth

41 If three forces acting in one plane upon a rigid body, keep it in equilibrium, then they must either

Prepared By: Prof.M.S.Aware(Mechanical Dept.)

c) Stability of floating bodies

d) The floor and wall both are rough

d) Designing safe structures

c) $\Sigma F \neq 0$, $\Sigma M = 0$ and $\Sigma \theta = 0$ d) $\Sigma F = 0$, $\Sigma M = 0$ and $\Sigma \theta \neq 0$

- a) Meet in a point
- b) Be all parallel

- c) At least two of them must meet
- d) All the above are correct
- 42 If three forces acting in different planes can be represented by a triangle, these will be in
 - a) Non-equilibrium
 - b) Partial equilibrium

c) Full equilibriumd) Unpredictable

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

5. Friction

Position in Question Paper

Total Marks-12

Q.4. c) 6-Marks. Q.6. d) 6-Marks.

Descriptive Question

- A block of weight 500 N resting on a horizontal surface requires a horizontal force of 200 N to just move the block. Calculate i) Normal reaction ii) Frictional resistance iii) Resultant reaction and iv) Coefficient of friction.
- 2. Define angle of repose.
- 3. State four laws of static friction.
- 4. Write two advantages and two disadvantages of friction.
- 5. Draw FBD of ladder in friction.
- 6. A body of weight 2000N rests on a horizontal plane. if the coefficient of friction is 0.4 .Find the horizontal force required to move the body.
- 7. A parcel weighing 200N is just on the point of moving horizontally by a force of 52N .What is the Coefficient of Friction?
- 8. Calculate the force 'P' applied parallel to the plane, just to move the block up the plane, if the block weighing 500N is placed on an inclined plane at an angle of 20° with the horizontal. Coefficient of friction is 0.14.
- 9. Calculate the force 'P' applied parallel to the plane, just to move the block up the plane, if the block weighing 500N is placed on an inclined plane at an angle of 20° with the horizontal. Coefficient of friction is 0.14.
- 10. Calculate coefficient of friction if a block weighing 600 N resting on a rough horizontal plane can be moved by a force of 150 N applied at an angle of 60° with the horizontal.
- 11.A block weighing 100N on a 30° inclined rough plane. If coefficient of friction is 0.25. Calculate force required to be applied parallel to plane to make the block slide downward.
- 12.A block weighing 40kN resting on a rough horizontal plane can be moved by a force 20kN applied at angle 40° with horizontal. Find the coefficient of friction.

- 13.A push of 30 N applied at 30° to horizontal just move the block of weight 'W' N. If angle of friction is 16°. Find coefficient of friction, total reaction and weight of block.
- 14.A block weighing 1000 N, resting on a horizontal plane requires a pull of 400 N to start its motion. When applied at an angle of 30° with the horizontal. Find the coefficient of friction, along with normal reaction, force of friction and resultant reaction.
- 15.Calculate the force required to prevent body from falling down the plane if body of weight 600 N is resting on rough inclined plane of 40° and $\mu = 0.58$.
- 16.Calculate the horizontal force required to drag a body of weight 100 N along horizontal plane. If the plane is raised gradually up to 16° the body will begin to slide

MCQ Question

(Total number of Question=Marks*3=12*3=36)

Note: Correct answer is marked with **bold.**

1	Complete the sentence. Friction always		
	a) helps the motion	c) both of these	
	b) opposes the motion	d) none of these	
2	Which one of these characteristics does a smoo	th surface has?	
	a) Less frictional force	c) Sometimes less	
	b) More frictional force	d) All of above	
3	Friction is a		
	a) Contact force	c) Magnetic force	
	b) Non-contact force	d) None of these	
4	What kind of substances are known as lubrican	ts	
	a) Increase friction	c) Increase or decrease friction	
	b) Decrease friction	d) None of these	
5	For maximum range of a projectile, the angle o	f projection should be	
	a) 30°	c) 60°	
	b) 45°	d) 90°	
6	On what force of friction depends?		
	a) Smoothness of surface	c) Inclination of surface	
	b) Roughness of surface	d) All of above	
7	Limiting force of friction is the		
	a) Tangent of angle between normal-reaction	c) The friction force acti	ng
Prep	ared By: Prof.M.S.Aware(Mechanical Dept.)		Page 36 of 48

	and the resultant of normal reaction and limiting frictionb) Ratio of limiting friction and normal reaction	when the body is just aboutto moved) The friction force actingwhen the body is in motion	
8	Lubricants		
	a) Increase friction	c) Both (a) and (b)	
	b) Reduce friction	d) None	
9	Rolling friction is smaller than?		
	a) Sliding friction	c) Fluid friction	
	b) Static friction	d) All of the above	
10	Tangent of angle of friction is equal to		
	a) Kinetic friction	c) Angle of repose	
	b) Limiting friction	d) Coefficient of friction	
11	The coefficient of static friction is		
	a) Less than the coefficient of kinetic friction	c) coefficient	
	b) Greater than coefficient of limiting friction	d) Equal tangent friction	
12	Which of the following kinetic friction is smaller	r?	
	a) Limiting friction	c) Rolling friction	
	b) Static friction	d) Sliding friction	
13	³ A cubical block rests on an inclined plane of $\mu = 1/\sqrt{3}$, determine the angle of inclination when the block just slides down the inclined plane?		
	a) 40°	c) 30°	
	b) 50°	d) 20°	
14	A mass of 4kg rests on a horizontal plane. The plane is gradually inclined until at an angle θ = 15° with the horizontal, the mass just begins to slide. What is the coefficient of static friction between the block and the surface?		
	b) 0.27	d) 3.5	
15	A scooter weighs 120kg f. Brakes are applied so start skidding. Find the force of friction if the co	that wheels stop rolling and efficient of friction is 0.4.	
	a) 60kg f	c) 25kg f	
	b) 48kg f	d) 32kg f	
16	How is friction due to air reduced?		
	a) Streamlining	c) By using ball bearings	
	b) Lubrication	d) By polishing	
17	Friction can be increased by		
	a) Using air cushion	c) Using sand	

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b) Lubricants	d) Using ball bearings		
18	⁸ When moving along a curved path, he			
	a) Leans inwards	c) Is still		
	b) Leans outwards	d) Leans sideways		
	A train has to negotiate a curve of radius 400m.	By how much should the		
19	putter rail be raised with respect to inner rail for	speed of 48 km/h? The		
	alstance between the fails is 1m.	a) 0.45m		
	a) 0.2011	d) 0.020m		
20	D) 0.0454m Vinctic friction is the	d) 0.020m		
20	A) Tangant of angle between normal reaction	a) The friction force esting		
	a) Tangent of angle between normal reaction and the resultant of normal reaction and the	c) The incluon force acting when the body is just about		
	limiting friction	to move		
	b) Ratio of limiting friction and normal	d) The friction force acting		
	reaction	when the body is in motion		
21	The coefficient of friction depends on			
	a) Area of contact	c) Strength of surfaces		
	b) Shape of surfaces	d) Nature of surface		
22	The ratio of limiting friction and normal reaction	n is known as		
	a) Coefficient of friction	c) Angle of repose		
	b) Angle of friction	d) Sliding friction		
23	The center of gravity of a uniform lamina lies at			
	a) theCentre of heavy portion	c) The mid-point of its axis		
	b) The bottom surface	d) All of the above		
24	If a rigid body is in equilibrium under the action	of three forces, then		
	a) These forces are equal	c) The lines of action of these forces are parallel		
	b) The lines of action of these forces meet in a point	d) (B) and (C) above		
25	The product of either force of couple with the ar	m of the couple is called		
	a) Resultant couple	c) Resulting couple		
	b) Moment of the forces	d) Moment of the couple		
26	The units of moment of inertia of mass are			
	a) Kg-m2	c) Kg/m2		
	b) m4	d) Kg/m		
27	Pick up the incorrect statement from the followi	ng:		
	a) the cG. of a circle is at its Centre			

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b) the CG. of a triangle is at the intersection of its medians		
	c) the CG. of a rectangle is at the intersection of its diagonals		
	d) the CG. of a semicircle is at a distance of $r/2$ from the Centre		
20	The maximum frictional force which comes into	play when a body just begins	
28	to slide over another surface is called		
	a) Limiting friction	c) Rolling friction	
	b) Sliding friction	d) Kinematic friction	
29	The necessary condition for forces to be in equil	ibrium is that these should be	
	a) Coplanar	c) Both (A) and (B) above	
	b) Meet at one point	d) All be equal	
30	If three forces acting in different planes can be r will be in	epresented by a triangle, these	
	a) Non-equilibrium	c) Full equilibrium	
	b) Partial equilibrium	d) Unpredictable	
31	The c) G. of a plane lamina will not be at its geo	metrical centre in the case of	
51	a		
	a) Right angled triangle	c) Square	
	b) Equilateral triangle	d) Circle	
32	The M.I. of hollow circular section about a centr	ral axis perpendicular to	
	section as compared to its M.I. about horizontal		
	a) Same	c) Half	
	b) Double	d) Four times	
33	The angle which an inclined plane makes with the	ne horizontal when a body	
	a) Friction		
	a) Friction	d) Kinemetic friction	
	b) Limiting metion	d) Killematic incuoir	
34	stands on it if the ladder makes an angle	espective of where man	
	a) Not greater than friction angle with vertical		
	b) Equal to friction angle with vertical	-	
	c) Greater than friction angle with vertical		
	d) Any angle irrespective of friction angle		
35	The total friction that can be developed is		
55	a) Independent of the magnitude of the area of contact		
	h) Proportion to the magnitude of the area of cou	ntact	
	c) Proportional to square of area of contact	nuci	
	d) None of the above		

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

36	5 Least force that starts a body along a plane acts at an angle with the plane		
	a) Equal to the angle of friction		
	b) Little more than angle of friction		
	c) Little less than angle of friction		
	d) Of zero degree		
27	friction is the force of friction experienced by a body when i		
31	is at rest.	1 5 5	
	a) Dynamic	c) Sliding	
	b) Static	d) Rolling	
20	friction is the value of the lin	niting friction just before	
30	slipping occurs.		
	a) Dynamic	c) Sliding	
	b) Static	d) Rolling	
30	friction is the force of friction	experienced by a body when it	
57	is in motion.		
	a) Dynamic	c) Sliding	
	b) Static	d) Rolling	
40	friction is the value of friction	onal force after slipping has	
10	occurred)		
	a) Dynamic	c) Sliding	
	b) Static	d) Rolling	
41	When a body slides over another, the frictiona	al force experienced by the body	
	is known as friction.		
	a) Sliding	c)static	
	b) Rolling	d) None of the mentioned	
42	When a body rolls over another, frictional for	ce experienced by the body is	
	known as friction.		
	a) Sliding	c) static	
	b) Rolling	d) None of the mentioned	
43	Co-efficient of rolling friction is	than co-efficient of	
	sliding friction.		
	a) Greater	c) Lesser	
	b) Equal to	d) None of the mentioned	
44	Which of the following produces least friction	1?	
	(a) Sliding friction	(c) Composite friction	
	(b) Rolling friction	(d) Static friction	

6. Centroid and Center of Gravity

Position in Question Paper

Total Marks-12

Q.4. c) 6-Marks. Q.6. d) 6-Marks.

Descriptive Question

- 1. Define centre of gravity.
- 2. Locate the position of centroid for the section shown in Figure

3. Locate the position of centroid for the section shown in Figure

4. Locate the position of centroid for the section shown in Figure

5. Locate the position of centroid for the section shown in Figure

6. Find the centre of gravity for the solid shown in Figure

7. Find the centre of gravity for the solid shown in Figure

8. Find the centre of gravity for the solid shown in Figure

9. Calculate the position of centroid from bottom left corner 'B' for a retaining wall as shown in fig

MCQ Question

(Total number of Question=Marks*3=12*3=36)

Note: Correct answer is marked with **bold.**

1	The centre of gravity of a homogeneous body is	s the point at which the whole	
	a) Volume assumed to be concentrated	c) Weight of the body	
_	b) Area of the surface of the body	d) All of the above	
2	Centre of gravity of a thin hollow cone lies on the	he axis of symmetry at a	
	neight of	c) One fourth of the total	
	a) One-han of the total height above base	d) None of these	
2	The point at which the total area of a plane figure	a) None of these	
3	concentrated is called	le is assumed to be	
	a) Centroid	c) Central point	
	b) Centre of gravity	d) Inertial point	
4	Which method is used to determine centroid of a	composite figure?	
	a) Analytical method	c) Both a) and b)	
	b) Graphical method	d) None of the above	
5	Where will be the center of gravity of an I section will be if the dimension of upper web is $2x10cm$, lower web is 2×20 and that of flange is $2x15cm$ If the y-axis will pass through the center of the section?		
	a) 7.611cm	c) 9.31cm	
	b) 9.51cm	d) 11.5cm	
6	What is the c) G of an isosceles triangle of base 2	20 cm and side 40?	
	a) 12.90 cm	c) 19.36 cm	
	b) 13.28 cm	d) 38.72 cm	
7	The point through which the whole weight of the	e body acts is called	
	a) Inertial point	c) Centroid	
	b) Center of gravity	d) Central point	
8	What is the distance of centroid with respect to	diagonal shown in diagram	
	below?		
	a) $a/\sqrt{3}$	c) $a / \sqrt{18}$	
	b) a /\v2	d) $3a/\sqrt{2}$	
9	Where will be the centre of gravity of a uniform	rod lies?	
	a) At its end	c) At its centre	
	b) At its middle point	d) Depends upon material	

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. **RSM POLY** Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

10	If a material has no uniform density through of centroid and center of mass are	out the body, then the position			
	a) identical	c) density			
	b) not identical	d) unpredictable			
11	Where will be the center of gravity of an I section will be if the dimension of upper web is $2x10$ cm, lower web is 2×20 and that of flange is $2x15$ cm If the y-axis will pass through the center of the section?				
	a) 7.611cm	c) 9.31cm			
	b) 9.51cm	d) 11.5cm			
12	What is the centroid distance of an equilateral triangle of side 2 m?				
	a) 0.866 m	c) 1.000 m			
	b) 0.769 m	d) 0.577 m			
	a) 5 N (↑)	c) 10 N (↓)			
	b) 10 N (↑)	d) 40 N (↓)			
16	Where will be the center of gravity of the L-section shown in the figure?				
	a) (1.28, 2.64)	c) (1.64, 3.28)			
	b) (1.45, 3.24)	d) (2.24, 3.68)			
17	The forces which do not meet at one point and their lines of action do not lie on the same plane are known as				
	a) Coplanar concurrent forces	c) Non-coplanar			
	b) Coplanar non-concurrent forces	d) None of these			
18	Where will be the centre of gravity of the T section shown in the figure?				
	a) At 8.545cm	c) At 5cm			
	b) At 6.5cm	d) At 9.25cm			
19	A screw jack used for lifting the loads is				
	a) A reversible machine	c) An ideal machine			
	b) A non-reversible machine	d) None of these			
20	Concurrent forces are those forces whose lines of action				
	a) Lie on the same line	c) Meet on the same plane			
	b) Meet at one point	d) None of these			
21	The term 'Centroid' is called				
	a) The same as centre of gravity	c) forces rotate			
	b) The point of suspension	d) None of the above			
22	Density is best given by				
	a) Product of volume and density	c) mass + density			
	b) Ratio of mass to Volume	d) mass –density			
Prep	pared By: Prof.M.S.Aware(Mechanical Dept.)		Page 45 of 48		

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

23	The total motion possessed by a body, is called			
	a) Impulsive force	c)	Weight	
	b) Mass	d)	Momentum	
24	Centroid determination involves the calculations of various forces. In that			
	forces are having various properties. That is force is developed by a			
	support that not allows the of its attached n	nem	ber.	
	a) Translation	c)	Addition	
~ ~	b) Rotation	d)	Subtraction	
25	What is not the condition for the equilibrium for the calculations used for the determination of the contraid in three dimensional system of exis?			
	the determination of the centroid in three dimensional $\Sigma F x = 0$	iona c)	$\Sigma F_{z=0}$	
	b) $\Sigma E = 0$	с) Л	$\sum r Z = 0$ $\Sigma F \neq 0$	
26	The wheels of a moving car possess	u)		
20	a) Potential energy only	c)	Kinetic energy	
	 a) Totential energy of translation only 	d)	both	
77	The coefficient of restitution for inelastic bodies	u) is	both	
21	a) Zoro	15	Batwaan zero and one	
	$\begin{array}{c} a) Zet 0 \\ b) One \end{array}$	() d)	More than on	
γQ	The periodic time of a perticle with simple harm	u) onic		
20	proportional to the angular velocity			
	a) Directly	c)	Square root	
	b) Inversely	d)	None of these	
29	Centroid of a body does depends upon the small weights of tiny particles.			
	Which statement is right for force acting by the small particles of the body			
	having it's vector form $as = Ai + Bj + Ck$?			
	a) representation of any vector we have vector $F = Ai + Bj + Ck$			
	b) representation of any vector we have vector $F = Ax + by + Cz$			
	c) representation of any vector we have vector $\mathbf{F} = \mathbf{F}\mathbf{x} + \mathbf{F}\mathbf{y} + \mathbf{F}\mathbf{z}$			
	d) representation of any vector we have vector $\mathbf{F} = \mathbf{Fi} + \mathbf{Fj} + \mathbf{Fk}$			
30	The centre of is the ratio of the product of o	ent	roid and volume to the	
	total volume.		Maga	
	a) Cellulold axis	() d)	Mass	
21	b) Density	a)		
51	on what the center of gravity of the uniform rod	nes	ita anoga gootianal area	
	a) Depends upon its material	с) Л	its cross-sectional area	
22	D) at its end The contained consistence of the circle line of the	a)	at its middle point	
32	The center of gravity of the circle lies on			

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	a) At its center	c)	Anywhere		
		cir	cumference		
	b) Anywhere on its diameter	d)	Anywhere on its radius		
33	Where will be the center of gravity of an T section of web is 2x20cm and that of flange is 2x15cm If through the center of the section?	on v f the	vill be if the dimension e y-axis will pass		
	a) 10.5cm	c)	12.35cm		
	b) 11.45cm	d)	12.85cm		
34	If the dimension of the upper web is 2x10cm, the that of the flange is 2x15cm If y-axis will pass th section. Where will be the center of gravity of the a) 11.5cm	e lov irou e I s c)	wer web is 2×20 and gh the center of the section? 9.31cm		
	b) 9.51cm	d)	7.611cm		
35	 Where will be the center of gravity of an I section will be if the diment of upper web is 2x8cm, lower web is 2×16 and that of flange is 2x12c the y-axis will pass through the center of the section? a) 7.611cm b) 6.53cm 				
	b) 7.44cm	d)	6 44cm		
36	What is the point called, through which the whole weight of the body acts?				
50	a) Central point	c)	Centroid		
	b) Center of gravity	d)	Inertial point		
37	The point at which the total area of a plane figure is assumed to be concentrated is called				
	a) Centroid	c)	Central point		
	b) Centre of gravity	d)	Inertial point		
38	Where will be the centre of gravity of a uniform rod lies?				
	a) At its end	c)	cross sectional area		
	b) At its middle point	d)	Depends		
39	Where the center of gravity of a circle lies?				
	a) At its centre	c)	its circumference		
	b) Anywhere on its radius	d)	on its diameter		
40	Where will be the center of gravity of an I section of upper web is 2×10 cm, lower web is 2×20 and the y-axis will pass through the center of the sect a) 7.611cm	n w that tion c)	ill be if the dimension t of flange is 2x15cm If ? 9.31cm		
	b) 9.51cm	d)	11.5cm		
41	The center of gravity of a circle of radius 10 cm	will	be		
	a) At its center of the diameter	c)	on the circumference		
Duon	and Dry Drof M S Awang (Machanical Dant)			Dece 17	

- b) At the center of the radiusd) Anywhere in its area42 A rectangle has dimensioned of 10cm x 20cm. where will be its center of gravity?
 - a) (10, 10)
 - b) (20, 5)

c) (10, 5)

d) (5, 10)