Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

Subject: -Elements of Electrical Engineering (22215)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

SYLLABUS

Chapter No.	Name of chapter	Marks With Option
$\mathbf{1}$	Magnetic Circuits	14
$\mathbf{2}$	AC Fundamentals	16
$\mathbf{3}$	Poly phase AC circuit	12
$\mathbf{4}$	Transformer and DC Motor	22
$\mathbf{5}$	Fractional horse Power motors	$\mathbf{2 0}$
$\mathbf{6}$	devices and switchgear	Total Marks: $\boldsymbol{-}$
		$\mathbf{1 0 4}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

BOARD THEORY

PAPER PATTERN

FOR EEC (22215)

Q.1		Attempt any FIVE
	a)	Magnetic Circuits
	b)	AC Fundamentals
	c)	Poly phase AC circuits
	d)	Transformer and DC Motor
	e)	Transformer and DC Motor
	f)	Fractional horse Power motors
Q.2	g)	Protective devise and switchgear
	a)	Magnetic Circuits
	b)	AC Fundamentals
	c)	Poly phase AC circuits
	d)	Transformer and DC Motor
Q.3		Attempt any THREE
	a)	Magnetic Circuits

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

	b)	Transformer and DC Motor
	c)	Fractional horse Power motors
	d)	Protective devise and switchgear
Q.4		Attempt any Three
	a)	Magnetic Circuits
	b)	Transformer and DC Motor
	c)	Fractional horse Power motors
	d)	Fractional horse Power motors
Q.5	e)	AC Fundamentals
	a)	AC Fundamentals
	b)	Poly phase AC circuits
	c)	Transformer and DC Motor
Q.6		Attempt any TWO
	a)	Fractional horse Power motors
	b)	Protective devise and switchgear
	c)	Protective devise and switchgear

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

CLASS TEST - I

PAPER PATTERN

COURSE: -Elements of Electrical Engineering (22215)
PROGRAMME: -Electrical Engineering
Syllabus: -

Unit No.	Name of the Unit	Course Outcome $($ CO $)$
1	Magnetic Circuits	CO-215.01
2	AC Fundamentals	CO-215.02
3	Poly phase AC circuits	CO-215.03

Q.1	Attempt any FOUR4*2=8Marks	Course Outcome $(\mathbf{C O})$
a)	Magnetic Circuits	$\mathbf{C O . 2 1 5 . 1}$
b)	AC Fundamentals	$\mathbf{C O . 2 1 5 . 2}$
c)	Poly phase AC circuits	$\mathbf{C O . 2 1 5 . 3}$
d)	Magnetic Circuits	$\mathbf{C O . 2 1 5 . 1}$
e)	AC Fundamentals	$\mathbf{C O . 2 1 5 . 2}$
f)	Poly phase AC circuits	$\mathbf{C O . 2 1 5 . 3}$
Q.2	Attempt any THREE3*4=12 Marks	
a)	Magnetic Circuits	$\mathbf{C O . 2 1 5 . 1}$
b)	AC Fundamentals	$\mathbf{C O . 2 1 5 . 2}$
c)	Poly phase AC circuits	$\mathbf{C O . 2 1 5 . 3}$
d)	AC Fundamentals	$\mathbf{C O . 2 1 5 . 2}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

CLASS TEST - II

PAPER PATTERN

COURSE: - Elements of Electrical Engineering (22215)
PROGRAMME: -Electrical Engineering
Syllabus: -

Unit No.	Name of the Unit	Course Outcome (CO)
4	Transformer and DC Motor	CO-215.04
5	Fractional horse Power motors	CO-215.05
6	Protective devise and switchgear	CO-215.06

| Q.1 | Attempt any FOUR | 4*2=8Marks |
| :---: | :--- | :---: | | Course Outcome |
| :---: |
| (CO) |$|$| CO.215.4 | |
| :---: | :---: |
| b) | Transformer and DC Motor |
| Fractional horse Power motors | CO.215.5 |
| c) | Protective devise and switchgear |
| d) | Transformer and DC Motor |
| e) | Fractional horse Power motors |
| f) | Protective devise and switchgear |
| Q.2 | Attempt any THREE |
| a) | Transformer and DC Motor |
| b) | Fractional horse Power motors |
| c) | Protective devise and switchgear |
| d) | Transformer and DC Motor |

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

COURSE OUTCOME

(CO)

COURSE: - Elements of Electrical Engineering (22215)
PROGRAMME: -Electrical Engineering

CO.NO.	Course Outcome
$\mathbf{C O - 2 1 5 . 0 1}$	Use principles of magnetic circuits
$\mathbf{C O - 2 1 5 . 0 2}$	Use single phase AC supply for electrical and electronics equipment
$\mathbf{C O - 2 1 5 . 0 3}$	Use three phase AC supply for industrial equipment and machines
$\mathbf{C O - 2 1 5 . 0 4}$	Connect transformer and DC motors for specific requirements
$\mathbf{C O - 2 1 5 . 0 5}$	Use FHP motors for diversified applications.
$\mathbf{C O - 2 1 5 . 0 6}$	Use relevant protective devices/switchgear for different requirements.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

1. Magneric Circuits

Q.1. a) 2-Marks.
Q.3. a) 4-Marks.
Q.4. a) 4-Marks.

Descriptive Question

1. Define Reluctance. What are its units?
2. Explain self-induced emf and mutually induced emf with neat sketch
3. Compare magnetic circuit and electric circuit on any four points.
4. Explain B-H curve and draw with all parameters.
5. Explain with neat diagram series and parallel magnetic circuits.
6. State Fleming's right hand rule
7. Define Faraday's first law of electromagnetic induction.
8. Compare electric and magnetic circuit on any four points.
9. Define Electromagnetism, Magnetic Flux, and MMF with their units.
10.Explain the terms 1. Statically induced EMF 2. Dynamically induced EMF
11.State and Explain Lenz Law.

MCQ Question

(Total number of Question=Marks*3=10*3=30)
Note: Correct answer is marked with bold.

1. An air gap is usually inserted in a magnetic circuits to
a) Increase m.m.f.
c) Prevent saturation
b) Increase the flux
d) None of the above
2. Permeability in a magnetic circuit corresponds to \qquad in an electric circuit
a) Resistance
c) Conductivity
b) Resistivity
d) Conductance
3. Those magnetic materials are best suited for making armature and transform cores which have \qquad permeability and \qquad .hysteresis loss
a) High, high
b) Low, high

Prepared By: Prof. P. A. Shinde (Department of Electrical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
c) High, low
d) Low, low
4. In a magnetic material hysteresis loss takes place primarily due to
a) Rapid reversals of its magnetisation
b) Flux density lagging behind the magnetising force
c) Molecular friction
d) It high retentivity
5. The property of a material which opposes the creation of magnetic flux in it is known
a) Reluctivity
c) Permeance
b) Magnetomotive force
d) Reluctance
6. The area of his hysteresis loss is a measure of
a) Permittivity
c) Energy loss per cycle
b) Permeance
d) Magnetic flux
7. In order to minimise hysteresis loss, the magnetic material should have
a) High resistivity
c) Large B - H loop area
b) Low hysteresis co-efficient
d) High retentivity
8. Hysteresis loss least depends on
a) Volume of material
b) Frequency
c) Steinmetz co-efficient of material
d) Ambient temperature
9. The hysteresis loss is caused by
a) Structural non-homogeneity
b) Work required for the magnetising the material
c) Potential work function
d) None of the above
10. According to Steinmetz hysteresis law, hysteresis loss in a material is proportional to
a) $\mathrm{B}^{3.6}$
b) $\mathrm{B}^{1.6}$
c) $\mathrm{B}^{1.2}$
d) B^{2}.
11.The unit of magnetic flux is
a) Henry
c) Ampere-turn/weber
b) Weber
d) Ampere/meter
12.The unit of reluctance is
a) Meter/henry
c) Henry
b) Henry/meter
d) $1 /$ henry
13. Reciprocal of reluctance is
a) Reluctivity
c) Permiability
b) Permeance
d) Susceptibility
14. The unit of retentivity is
a) Weber
c) Ampere turn/metre
b) Weber/sq. meter
d) Ampere turn
15.Silicon steel is used in electrical machines because it has

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
a) Low co-ercivity
c) Low hysteresis loss
b) Low retentivity
d) High co-ercivity
16. Conductivity is analogous to
a) Retentivity
c) Permeability
b) Resistivity
d) Inductance
17. Conductance is analogous to
a) Permeance
c) Flux
b) Reluctance
d) Inductance
18. Material for good magnetic memory should have
a) Low hysteresis loss
c) Low retentivity
b) High permeability
d) High retentivity
19.Hard steel is suitable for making permanent magnets because
a) It has good residual magnetism
b) Its hysteresis loop has large area
c) Its mechanical strength is high
d) Its mechanical strength is low
20.Permanent magnets are normally made of
a) Alnico alloys
c) Cast iron
b) Aluminium
d) Wrought iron
21.How is mutual inductance between two coils decreased?
a) By using a common core
b) By moving the coils closer
c) By moving the coils apart
d) By increasing the number of turns of either coil
22.A magnetic field is
a) The current flow through space around a permanent magnet
b) The force set up when current flows through a conductor
c) The force that drives current through a resistor
d) The force between the plates of a charged capacitor
23.Ohm's law can be used only to a \qquad circuit or component.
a) Unilateral
c) Trivalent
b) Exponential
d) Linear
24.the current flows, the magnetic field conductor is in what direction?
a) The same as the current direction
b) Opposite the current direction
c) Omnidirectional
d) In the direction determined by the left hand rule
25.The magnetic field around the conductor is determined by the
a) Size of the conductor
b) Amount of current
c) Current divided by the resistance

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
d) Resistance divided by the current
26. Back emf refers to the
a) Current equal to the applied emf
b) Opposing emf
c) Current opposing the applied emf
d) Voltage opposing the applied emf
27. The magnetic flux through a coil changes. This results to the induced emf acting in a direction as to
a) Oppose the change
b) Aid the change
c) Either oppose or aid the change
d) Neither oppose nor aid the change
28. A magnetic flux of $2.5 \times 10^{\wedge} 4 \mathrm{~Wb}$ through an area of $5 \times 10^{\wedge} 4$ square meters results
a) Wb
c) $5 \times 10^{\wedge}-5 \mathbf{W b}$ of flux
b) Tesla of flux density
d) 5000 Tesla of flux density
29.If a 20 V potential is applied across a relay coil with 50 turns having 1Ω of resistance, the total magnetomotive producing magnetic flux in the circuit is
a) 10 Wb
b) 50 T
c) $1000 \mathrm{At} / \mathrm{m}$
d) $\mathbf{1 0 0 0}$ A.t
30. What is the reluctance of a magnetic path having a length of $2 \times 10^{\wedge}-3 \mathrm{~m}$ and crosssectional area of $2.5 \times 10^{\wedge}-3 \mathrm{~m}^{\wedge} 2$?
a) $6366 \mathrm{A.t} / \mathrm{Wb}$
b) 6000 A.t/Wb
c) $8 \times 10^{\wedge}-3 \mathrm{~A} . \mathrm{t} / \mathrm{Wb}$
d) $0.8 \mathrm{~A} . \mathrm{t} / \mathrm{Wb}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

2. AC Fundamental

Position in Question Paper

Total Marks-10
Q.1. b) 2-Marks.
Q.2. b) 4-Marks.
Q.4. a) 4-Marks.

Descriptive Question

1. Define - frequency. State its relation with time period.
2. If maximum value of a sine wave is 25 A . Calculate its average value.
3. Draw a power triangle and state the relation between its sides.
4. State the range of phase angle and hence pf for a series RC circuit.
5. In a series RL circuit $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=150 \mathrm{~V}$. Find equivalent voltage across the circuit.
6. An alternating current is given by $\mathrm{i}=20 \sin (314 \mathrm{t})$. Find - Current at $\mathrm{t}=0.0025 \mathrm{sec}$ at first instant. Time required to reach at 12A for first time.
7. A series circuit has a leading pf. Express it with circuit, waveform and phasor diagram.
8. In RLC series circuit $R=8 \mathrm{~W}, \mathrm{~L}=0.42 \mathrm{H}$ with an unknown capacitor. If the circuit is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \varphi \mathrm{AC}$. Calculate value of capacitor so that circuit resonates at supply frequency. Also calculate current and pf at this instant.
9. Define peak factor and form factor. State value of each for a pure sine wave.
10. Define - frequency. State its relation with time period.
11. If maximum value of a sine wave is 25 A . Calculate its average value.
12. Draw a power triangle and state the relation between its sides.
13. State the range of phase angle and hence pf for a series $R C$ circuit.
14. In a series RL circuit $V_{R}=100 \mathrm{~V}$ and $V_{L}=150 \mathrm{~V}$. Find equivalent voltage across the circuit.
15. An alternating current is given by $\mathrm{i}=20 \sin (314 \mathrm{t})$. Find -
1) Current at $t=0.0025 \mathrm{sec}$ at first instant.
2) Time required to reach at 12 A for first time.
16. A series circuit has a leading pf. Express it with circuit, waveform and phasor diagram.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
17. In RLC series circuit $R=8 \mathrm{~W}, \mathrm{~L}=0.42 \mathrm{H}$ with an unknown capacitor. If the circuit is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \varphi$ AC. Calculate value of capacitor so that circuit resonates at supply frequency. Also calculate current and pf at this instant.
18. Define peak factor and form factor. State value of each for a pure sine wave.
19. A series RLC circuit consists of $R=20 \mathrm{~W}, L=1 H$ and $C=2500 \mu \mathrm{f}$. If it is connected across $230 \mathrm{~V}, 1 \varphi \mathrm{AC}$. Calculate Q factor and resonant frequency.
20. Derive the condition for resonance in an RLC series circuit. Also derive the equation for Q factor.
21. State nature of pf for any two conditions in RLC series circuit. Draw phasor diagram for each.
22. Write any two advantages of AC over DC
23. Explain the concept of lagging and leading phase angle by waveform.
24. Define: (i) Form factor (ii) Peak factor
25. State value of power factor for purely resistive and purely capacitive circuit.
26. Explain the generation of single phase AC supply by an elementary alternator with neat sketch.
27. An alternating current given by equation $i=142.14 \sin 628 \mathrm{t}$. find -
(i)Maximum value (ii) Time period(iii) RMS value (iv) Average value (v) Form factor (vi) Peak factor

MCQ Question

(Total number of Question=Marks*3=10*3=30)

Note: Correct answer is marked with bold

1. Instantaneous voltage is the product of resistance and \qquad current in a resistive circuit.
a) Instantaneous
c) RMS
b) Average
d) Peak

2 .Find the value of the instantaneous voltage if the resistance is 2 ohm and the instantaneous current in the circuit is 5 A .
a) 5 V
b) 2 V
c) 10 V
d) 2.5
3. The power for a purely resistive circuit is zero when?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) Current is zero
b) Voltage is zero
c) Both current and voltage are zero
d) Either current or voltage is zero
4. The correct expression for the instantaneous current if instantaneous voltage is $\mathrm{Vm}(\sin t)$ in a resistive circuit is?
a) 1 A
b) 2 A
c) 3 A
d) 4 A
5. Calculate the resistance in the circuit if the rms voltage is 20 V and the rms current is 2A.
a) 2 ohm
b) 5 ohm
c) $\mathbf{1 0} \mathbf{~ o h m}$
d) 20 ohm

6 The correct expression for the instantaneous current in a resistive circuit is?
a) $\mathbf{i}=\operatorname{Vm}(\sin t) / R$
b) $\mathrm{i}=\mathrm{Vm}(\cos \mathrm{c}) / \mathrm{R}$
c) $i=V(\sin t) / R$
d) $i=V(\operatorname{cost}) / R$

7 Can ohm's law be applied in an ac circuit?
a) Yes
c) Depends on the rms current
b) No
d) Depends on the rms voltage

8 The correct expression for the instantaneous current if instantaneous voltage is $\mathrm{Vm}(\sin t)$ in an inductive circuit is?
a) $i=\operatorname{Vm}(\sin t) / X_{L}$
b) $\mathrm{i}=\mathrm{Vm}(\operatorname{cost}) / \mathrm{X}_{\mathrm{L}}$
c) $i=-\operatorname{Vm}(\sin t) / X_{L}$
d) $\mathbf{i}=-\operatorname{Vm}(\operatorname{cost}) / \mathbf{X}_{\mathbf{L}}$

9 Inductor does not allow sudden changes in?
a) Voltage
c) Resistance
b) Current
d) Inductance

10 Inductance is \qquad to number of turns in the coil
a) directly proportional
c) equal
b) inversely proportional
d) not related
11. Choke involve use of \qquad
a) Resistor
c) Inductor
b) Capacitor
d) Transistor
12.What is the value of current in an inductive circuit when there is no applied voltage?
a) Minimum
c) Zero
b) Maximum
d) Cannot be determined
13. What is the current in an inductive circuit when the applied voltage is maximum?
a) Infinity
c) Zero
b) Maximum
d) Cannot be determined
14. In an inductive circuit, the voltage \qquad the current?
a) Leads
b) Lags

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
c) Is greater than
15.In an inductive circuit, the current \qquad the voltage?
a) Leads
c) Is greater than
b) Lags
d) Is less than
16.In which device inductor cannot be used?
a) filter circuit
c) choke
b) transformer
d) dielectric
17. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the current in the circuit.
a) 2.2 A
b) 4.2 A
c) 6.2 A
d) 8.2
18. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the phase difference.
a) $\mathbf{- 5 5 . 1}$
b) 55.1
c) 6
d) -66.1

19 A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the voltage across the resistor.
a) 31.8 V
b) $\mathbf{5 7 . 4 V}$
c) 67.3 V
d) 78.2

20 A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the voltage across the inductor.
a) 52 V
b) 82 V
c) 65 V
d) 76 V

21 A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a x V 50 Hz sinusoidal supply. The current in the circuit is 8.2 A . Calculate the value of x .
a) 10 V
b) 50 V
c) 100 V
d) 120

22 Which, among the following, is the correct expression for φ.
a) $\varphi=\tan ^{-1}(X L / R)$
b) $\varphi=\tan ^{-1}$ (R/XL)
c) $\varphi=\tan ^{-1}(\mathrm{XL} * \mathrm{R})$
d) $\varphi=\cos ^{-1}(X L / R)$

23 For an RL circuit, the phase angle is always \qquad Positive
b) 0
a) Negative
c) 90

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

24 What is φ in terms of voltage?
a) $\varphi=\cos ^{-1} \mathrm{~V} / \mathrm{VR}$
b) $\varphi=\cos ^{-1} V^{*} \mathrm{VR}$
c) $\varphi=\cos ^{-1} \mathrm{VR} / \mathrm{V}$
d) $\varphi=\tan ^{-1} \mathrm{~V} / \mathrm{VR}$

25 What is $\sin \phi$ from impedance triangle?
a) X_{L} / R
b) X_{L} / Z
c) R / Z
d) Z / R

26 What is the resonance frequency of ac circuit?
a) $1 / \sqrt{ } \mathrm{LC}$
b) $\sqrt{ }(\mathrm{L} / \mathrm{C})$
c) $\sqrt{ } \mathrm{LC}$
d) LC
27.What is impedance at resonance?
a) maximum
c) zero
b) minimum
d) cannot be determined
28. What is the value of impedance at resonance?
a) X_{L}
b) X_{C}
c) \mathbf{R}
d) 0
29. What is φ in terms of voltage?
a) $\varphi=\cos ^{-1} \mathrm{~V} / \mathrm{V}_{\mathrm{R}}$
b) $\varphi=\cos ^{-1} V^{*} V_{R}$
c) $\boldsymbol{\varphi}=\cos ^{-1} V_{R} / V$
d) $\varphi=\tan ^{-1} V / V_{R}$
30. What is $\tan \phi$ for $R C$ circuit?
a) X_{C} / R
b) X_{L} / R
c) R / Z
d) Z / R

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

3. Poly phase AC Circuits

Position in Question Paper

Total Marks-10
Q.1. c) 2-Marks.
Q.2. c) 4-Marks.
Q.4. b) 4-Marks.

Descriptive Question

1. Draw phasor diagram for 3φ generated voltages.
2. List any two advantages of 3φ circuits over single phase circuits.
3. List any four observations from the phasor diagram of a 3φ delta connection.
4. Three impedances each of $Z=15+j 18 \mathrm{~W}$ are connected in star across a $400 \mathrm{~V}, 3 \varphi, \mathrm{AC}$. Calculate $-\mathrm{V}_{\mathrm{ph},} \mathrm{I}_{\mathrm{ph}}, \mathrm{I}_{\mathrm{L}}, \mathrm{Pf}$
5. Draw the sinusoidal waveform of 3 ph emf and also indicate the phase sequence.
6. State relationship between line voltage and phase voltage, line current and phase current in a balanced delta connection. Draw complete phasor diagram of voltages and current.
7. State any four advantages of poly phase circuit over single phase circuit.
8. Draw the waveform representation of a three phase AC supply with neat labels.
9. State four advantages of poly-phase circuit over single phase circuit.
10.Draw delta connected load. Sate relation between: Line voltage and phase voltage, Line current and phase current
10. Draw 3-phase voltage waveform of a.c. supply with respect to time.
12.Write any four advantages of 3f system over 1f system.
11. Write meaning of the term 'balanced load'' in case of 3 f system.
14.Draw phasor diagram for 3φ generated voltages.
15.List any two advantages of 3φ circuits over single phase circuits.
16.List any four observations from the phasor diagram of a 3φ delta connection.
17.Three impedances each of $Z=15+j 18 \mathrm{~W}$ are connected in star across a $400 \mathrm{~V}, 3 \varphi, \mathrm{AC}$. Calculate $-\mathrm{V}_{\mathrm{ph}}, \mathrm{I}_{\mathrm{ph}}, \mathrm{I}_{\mathrm{L}}, \mathrm{Pf}$
18.Draw the sinusoidal waveform of 3 ph emf and also indicate the phase sequence.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks*3=10*3=30)

Note: Correct answer is marked with bold
1 In a balanced three-phase system-delta load, if we assume the line voltage is $\mathrm{V}_{\mathrm{RY}}=$ $\mathrm{V} \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{YB} is?
a) $\mathrm{V} \angle 0^{0}$
b) $\mathrm{V} \angle-\mathbf{1 2 0} 0^{0}$
c) $\mathrm{V} \angle 120^{\circ}$
d) $V \angle 240^{\circ}$

2 . In a balanced three-phase system-delta load, if we assume the line voltage is $\mathrm{V}_{\mathrm{RY}}=$ $\mathrm{V} \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{BR} is?
a) $\mathrm{V} \angle 120^{\circ}$
b) $\mathrm{V} \angle 240^{\circ}$
c) $V<-240^{0}$
d) $\mathrm{V} \angle-120^{\circ}$

3 . In a delta-connected load, the relation between line voltage and the phase voltage is?
a) line voltage $>$ phase voltage
c) line voltage $=$ phase voltage
b) line voltage < phase voltage
d) line voltage $>=$ phase voltage
4. If the load impedance is $\mathrm{Z} \angle \emptyset$, the current $\left(\mathrm{I}_{\mathrm{R}}\right)$ is?
a) $(\mathrm{V} / \mathrm{Z})<-\emptyset$
b) $(V / Z) \angle \emptyset$
c) $(\mathrm{V} / \mathrm{Z})<90-\varnothing$
d) $(\mathrm{V} / \mathrm{Z})<-90+\varnothing$
5. If the load impedance is $\mathrm{Z} \angle \emptyset$, the expression obtained for current $\left(\mathrm{I}_{\mathrm{Y}}\right)$ is?
a) $(\mathrm{V} / \mathrm{Z})<-120+\varnothing$
b) $(\mathrm{V} / \mathrm{Z})<120-\varnothing$
c) $(\mathrm{V} / \mathrm{Z}) \angle 120+\varnothing$
d) $(\mathrm{V} / \mathrm{Z})<-\mathbf{1 2 0 - \emptyset}$
6. If the load impedance is $Z \angle \emptyset$, the expression obtained for current (Iis?
a) $(V / Z)<-240+\varnothing$
b) $(\mathrm{V} / \mathrm{Z})<-\mathbf{2 4 0 - \varnothing}$
c) $(\mathrm{V} / \mathrm{Z})<240-\varnothing$
d) $(\mathrm{V} / \mathrm{Z})<240+\varnothing$
7. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a 400 V , 3 - \emptyset balanced supply. Determine the phase current I_{R}. Assume the phase sequence to be R_{Yb}.
a) $\mathbf{4 4 . 7 4} \angle-\mathbf{6 3 . 4 ^ { 0 }} \mathrm{A}$
b) $44.74 \angle 63.4^{\circ} \mathrm{A}$
c) $45.74 \angle-63.4^{\circ} \mathrm{A}$
d) $45.74 \angle 63.4^{\circ} \mathrm{A}$
8. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a 400 V , 3 - \emptyset balanced supply. Determine the phase current I_{Y}.
a) $44.74 \angle 183.4^{\circ} \mathrm{A}$
b) $45.74 \angle 183.4^{\circ} \mathrm{A}$
c) $\mathbf{4 4 . 7 4 \angle 1 8 3 . 4 ^ { 0 }} \mathrm{A}$
d) $45.74 \angle-183.4^{\circ} \mathrm{A}$
9. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a 400 V , 3 - \emptyset balanced supply. Determine the phase current I_{B}.
a) $44.74 \angle 303.4^{\circ} \mathrm{A}$
b) $\mathbf{4 4 . 7 4 \angle - 3 0 3 . 4 ^ { \circ } \mathrm { A }}$
c) $45.74 \angle 303.4^{0} \mathrm{~A}$
d) $45.74 \angle-303.4^{\circ} \mathrm{A}$
10.Determine the power (kW) drawn by the load.
a) 21
b) 22
c) 23
d) 24

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
11.The power generated by a machine increases \qquad percent from single phase to two phase.
a) 40.4
b) 41.4
c) 42.4
d) 43.4
12.The percentage of power increased from single phase to three phase is?
a) 50
b) 100
c) 150
d) 200
13. When the power factor is \qquad the power becomes zero 100 times a second in a 50 Hz supply.
a) 0
b) 1
c) 2
d) 3
14. Which motors are called self-starting motors?
a) single phase
c) three phase
b) two phase
d) four phase
15.In three phase system, the three voltages (currents) differ in phase by _____electrical degrees from each other in a particular sequence.
a) 30
b) 60
c) 90
d) $\mathbf{1 2}$

16 In a two phase generator, the armature has two distinct windings that are displaced
\qquad apart.
a) 45^{0}
b) 90°
c) 135°
d) 180°
17.In three phase system at any given instant, the algebraic sum of three voltages must be?
a) 0
b) 1
c) 2
d) 3
18.Phase sequence depends on the \qquad
a) Field
c) armature
b) rotation of the field
d) rotation of the armature
19.If $\mathrm{RR}^{\prime}, \mathrm{YY}^{\star}$ and $\mathrm{BB}^{‘}$ constitutes three phase sequence if $\mathrm{V}_{\mathrm{RR}}=\mathrm{V}_{\mathrm{m}} \sin \omega$ t its corresponding field magnets are in clockwise direction, then $\mathrm{V}^{\star}{ }_{\mathrm{YY}}=$?
a) $V_{m} \sin \omega t$
b) $V_{m} \sin \left(\omega t+120^{\circ}\right)$
c) $V_{m} \sin \left(\omega t-120^{\circ}\right)$
d) $V_{m} \sin \left(\omega t-240^{\circ}\right)$
20.If $R R^{\prime}, Y^{\star}$ and $B B^{\star}$ constitutes three phase sequence if $V^{\star}{ }_{R R}=V_{m} \sin \omega t$ its corresponding field magnets are in clockwise direction, then the value of V^{\star} BB is?
a) $V_{m} \sin \left(\omega t-240^{\circ}\right)$
b) $\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-120^{\circ}\right)$
c) $V_{m} \sin \left(\omega t+240^{\circ}\right)$
d) $V_{m} \sin \omega t$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
21.In a three phase alternator, there are \qquad independent phase windings or coils.
a) 1
b) 2
c) 3
d) 4
22.Each coil in three phase alternator has \qquad number of terminals.
a) 2
b) 4
c) 6
d) 8
23.In wye or star connection \qquad of the three phases are joined together within the alternator.
a) similar ends
b) opposite ends
c) one similar end, two opposite ends
24.The voltage between \qquad and \qquad is called phase voltage.
a) line and line
b) line and reference
\qquad is called line voltage.
25.The voltage between
a) line and neutral point
c) line and line
b) line and reference
d) neutral point and reference
26. In the Delta or Mesh connection, there will be \qquad number of common terminals.
a) 1
b) 2
c) 3
d) 0
27.The relation between line voltage and phase voltage in Delta or Mesh connection is?
a) $V_{\text {phase }}>V_{\text {line }}$
b) $\mathrm{V}_{\text {phase }}<\mathrm{V}_{\text {line }}$
c) $V_{\text {phase }}=V_{\text {line }}$
d) $V_{\text {phase }}>=V_{\text {line }}$
28. Which of the following voltage is a phase voltage in the delta connection?
a) V_{RN}
b) $V_{B R}$
c) V_{YN}
d) $V_{B N}$
29.A balanced delta-connected load of $(2+\mathrm{j} 3) \Omega$ per phase is connected to a balanced three-phase 440 V supply. The phase current is 10 A . Find the total active power.
a) 7.26 W
b) 726 W
c) 7260 W
d) 72.6 W
30.A balanced delta-connected load of $(2+\mathrm{j} 3) \Omega$ per phase is connected to a balanced three-phase 440 V supply. The phase current is 10 A . Find the apparent power.
a) $\mathbf{1 0 9 5 5 . 6 7} \mathrm{VAR}$
b) 10.95567 VAR
c) 109.5567 VAR
d) 1.095567 VAR

4. Transformer and DC Motor

Position in Question Paper

Total Marks-14
Q.1. c) 2-Marks.
Q.2. d) 4-Marks.
Q.3. b) 4-Marks.
Q.4. b) 4-Marks.

Descriptive Question

1. Define the transformation ratio of a transformer
2. State working principle of transformer.
3. Draw a practical set up to find voltage and current ratio on a $230 / 115 \mathrm{~V}, 1 \mathrm{KVA}$, 1f 50 Hz transformer. Also write reading of each meter.
4. Compare auto transformer and two winding transformer on any four points
5. Write two applications of D.C. series motor.
6. State function of poles and brushes in DC motors. State material for each.
7. Write principle of operation for a DC motor
8. Draw neat constructional sketch of auto transformer. State its advantages and applications.
9. Draw neat constructional sketch of shell type transformer.
10.A $2000 / 200 \mathrm{~V}$, single phase, 50 Hz transformer has the maximum flux of 30 mwb . Find out the no. of turns on primary and secondary windings if the cross sectional area of the core is 1.1 cm 2
11.Compare two winding transformer and auto transformer. (Any four points)
10. Draw schematic representation of - DC shunt motor
11. Draw schematic representation of $D C$ series motor
14.Draw schematic representation of DC compound motor

MCQ Question

(Total number of Question=Marks*3=14*3=42)
Note: Correct answer is marked with bold

1. The main purpose of using core in transformer is to
a) Decrease reluctance of the common magnetic circuit
b) Decrease iron losses

Prepared By: Prof. P. A. Shinde (Department of Electrical Engineering)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
c) Prevent hysteresis lose
d) Prevent eddy current losses
2. Transformer works on the principle of
a) Self induction
b) Mutual induction
c) Faraday's law of electromagnetic induction
d) Self and mutual induction both
3. If dc voltage is applied to the primary of a transformer it may
a) Work
b) Burn the winding
c) Not work
d) Give lower voltage on the secondary side
4. Which of the following will improve the mutual coupling between primary and secondary of a transformer ?
a) Transformer oil of high breakdown voltage
b) Winding material of high resistivity
c) High reluctance magnetic core
d) Low reluctance magnetic core
5. Which type of core is used for a high-frequency transformer
a) Open iron core
c) Closed iron core
b) Air core
d) None of these
6. Transformer oil used in transformer provides
a) Insulation and cooling
b) Cooling and lubrication
c) Lubrication and insulation
d) Insulation, cooling and lubrication
7. Enamel layer is coated over the lamination of a transformer core to
a) Attain adhesion between the lamination
b) Prevent corrosion of laminations
c) Decrease the hum
d) Insulate the lamination from each other
8. In a transformer, the magnetic coupling between the primary and secondary circuit can be increased by
a) increasing the number of turns
b) using soft material for winding
c) using magnetic core of low reluc-tance
d) using transformer oil better quality

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
9. If the density in the core of a transformer is increased
a) the frequency the secondary winding voltage increases
b) wave shape of the secondary winding voltage gets distorted
c) size of the transformer can be reduced
d) eddy current losses increase
10. The power factor in a transformer
a) is always unit
b) is always leading
c) is always lagging
d) depends on the power factor of load
11. Which of the following transformer will be largest is size?
a) $1 \mathrm{kVA}, 50 \mathrm{~Hz}$
b) $1 \mathrm{KVA}, 60 \mathrm{~Hz}$
c) $1 \mathrm{KVA}, 100 \mathrm{~Hz}$
d) $\mathbf{1 K V A}, 500 \mathrm{~Hz}$
12. A transformer transforms
a) Current
c) Frequency
b) Voltage
d) Both voltage and current
13.A transformer does not change the following
a) Waveform
d) Both frequency and waveform
b) Frequency
c) Voltage
14. A transformer provides a path for magnetic flux of
a) High reluctance
c) Low reluctance
b) High conductivity
d) Low conductivity
15. An ordinary transformer works on
a) A.C
c) Both a.c. and d.c.
b) D.C
d) Pulsating d.c.
16. An ideal transformer is one which has
a) A common core for its primary and secondary winding
b) Core of stainless steel and winding of pure copper wire
c) No losses and magnetic leakage
d) Interleaved primary and secondary windings
17.The primary and secondary induced emfs E_{1} and E_{2} in two-winding transformer are always
a) Antiphase with each other
b) In phase with each other
c) Equal in magnitude
d) Determined by load on transformer secondary

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
18. An step-up transformer increases
a) Current
c) Voltage
b) Frequency
d) Power
19.Eddy current losses in a transformer core may be reduced by
a) Reducing the air gap in the magnetic circuit
b) Reducing the thickness of lami-nations
c) Increasing the thickness of lami-nations
d) Increasing the gap in the magnetic circuit
20.The transformer core is generally made of
a) Alumimium
c) Copper
b) Silicon steel
d) Wood
21.22. Which of the following is minimized by laminating the core of a transformer?
a) Hysteresis loss
c) Heat loss
b) Eddy current loss
d) All of these
22.23. Thickness of laminations of trans-former core is usually of the order of
a) 0.35 mm to 0.5 mm
b) 3.5 mm to 5 mm
c) 35 mm to 50 mm
d) $\mathbf{5 m m}$ to 10 mm
23. The size of transformer core depends on
a) Area of the core
c) Frequency
b) Flux density of core material
d) Both (b) and (c)
24.In power transformers, breather is used to
a) Provide insulation to the windings
b) Provide cooling to the windings
c) Take insulating oil from the con-servator
d) Extract moisture from the air
25.In a transformer, conservator con-sists of
a) Drum placed at the bottom of the tank
b) An air tight metal drum fixed at the top of the tank
c) Overload protection circuit
d) None of these
26.In a transformer, the resistance between its primary and secondary should be
a) Infinite
c) About $1 \mathrm{M} \Omega$
b) Zero
d) About $100 \mathrm{M} \Omega$
27. For large power transformer, best utilization of available core space can be made by using
a) Square core section
c) Rectangular core section
b) Stepped core section
d) None of these

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
28. Five limb core construction of transformer has advantage over three limb core construction that
a) Hysteresis loss is less
b) Permeability is higher
c) Magnetic reluctance of the three phases can be balanced
d) Eddy current loss is less
29.A shunt motor is fitted with a field regulator for speed control. For constant torque load, the speed will be minimum when the resistance of the regulator is
a) $\mathbf{0 \Omega}$
c) About 10Ω
b) Infinite
d) About 100Ω
30.Transformer windings are tapped in the middle because
a) It eliminates axial forces on the windings
b) It eliminates radial forces on the windings
c) It reduces insulation requirement
d) None of these
31. Which of the following materials is used to absorb moisture from air entering the transformer?
a) Silica sand
c) Felt pad
b) Silical gel
d) Sodium chloride
32. Which of the following acts as a protection against high voltage surges due to lightening and switching?
a) Horn gaps
c) Conservator
b) Thermal overload relays
d) Breather
33. A tap changer is used on a trans-former for
a) Adjustment in power factor
b) Adjustment in secondary voltage
c) Adjustment in primary voltage
d) Adjustments in both primary and secondary voltage
34.Overcurrents in a transformer affect
a) Insulation life
c) Mechanical stress
b) Temperature rise
d) All of these
35.Highest rating transformers are likely to find application in
a) Generation
c) Distribution
b) Transmission
d) Substation
36.Transformer ratings are usually expressed in terms of
a) Voltage
c) $\mathbf{K W h}$
b) KVA
d) KW

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
37.The noise in transformer due to vibration of laminations set by magnetic forces, is called
a) Flicker noise
c) Agitation noise
b) Transit-time noise
d) Humming noise
38. The maximum load that a power transformer can carry is limited by its
a) Voltage ratio
c) Temperature noise
b) Copper loss
d) Dielectric strength of oil
39. In a three-phase transformer, the phase difference between the primary voltage and the induced secondary winding voltage is
a) 90°
c) $\mathbf{1 8 0}^{\circ}$
b) 120°
d) None of the above
40.In dc motor, the rotor is
a) Welded to the shaft
c) Soldered to the shaft
b) Keyed to the shaft
d) Both to the shaft
41. In a dc motor, pole shoes are fixed to the magnet core by
a) Set of screws
c) Soldering
b) Key
d) Welding
42. Carbon brushes are used in electric motors to
a) Prevent sparking during commutation
b) Provide a path for flow of current
c) Brush off carbon deposits on the commutator
d) None of these

5. Fractional Hourse Power Motor

Position in Question Paper

Total Marks-14
Q.1. f) 2-Marks.
Q.3. c) 4-Marks.
Q.4. c) 4-Marks.
Q.4. d) 4-Marks.

Descriptive Question

1. State the types of single phase induction motors.
2. Draw schematic representation of capacitor. Start capacitor run induction motor. Also state its applications.
3. Draw a neat schematic of shaded pole 1f Induction motor. List any two applications of it.
4. Explain principle of operation of universal motor with neat diagram
5. Write any two applications of following motors - Universal motor (ii) Stepper motor
6. Explain the working principle of stepper motor and explain any one type with neat sketch.
7. Suggest suitable motor for following applications- (i) Food Mixer (ii) Electric Fan
8. List different types of stepper motor. State one application of stepper motor.
9. List any four applications of stepper motor
10.Draw a neat schematic of universal motor. State its principle of operations. Write the method for reversal of direction.
11.Draw a neat sketch of permanent capacitor 1f induction motor. Explain its working

MCQ Question

(Total number of Question=Marks*3=14*3=42)
Note: Correct answer is marked with bold

1. At zero in an induction motor
a) Motor runs as a generator
b) Motor does not run
c) The motor runs an at synchronous speed
d) Slip produced is zero
2. In an induction motor, rotor slots are usually not quite parallel to the shaft but are given a slight skew

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) To reduce the magnetic hum
b) To reduce the locking tendency of the rotor
c) Both (a) and (b) above
d) To increase the speed of the motor
3. The field of an induction motor rotor rotates relative to the stator at
a) Rotor speed
c) Slip speed
b) Synchronous speed
d) Very low speed
4. In an induction motor, rotor runs at a speed
a) Equal to the speed of stator field
b) Lower than the speed of stator field
c) Higher than the speed of stator field
d) Having no relation with the speed of stator field
5. Starters are used in induction motor because
a) Its starting torque is high
b) It is run against heavy load
c) It can not run in reverse direction
d) Its starting current is five times or more than its rated current
6. When an induction motor runs at rated load and speed, the iron losses are
a) Negligible
b) Very heavy
c) Independent of supply frequency
d) Independent of supply voltage
7. By synchronous wattage of an induction motor is meant
a) Stator input in watts
c) Rotor input in watts
b) Rotor output in watts
d) Shaft output in watts
8. The emf induced in the rotor of an induction motor is proportional to
a) Voltage applied to stator
b) Relative velocity between flux and rotor conductors
c) Both (a) and (b) above
d) Slip
9. The synchronous speed of an induction motor is defined as
a) Natural speed at which a magnetic field rotates
b) The speed of a synchronous motor
c) The speed of an induction motor at no load
d) None of these
10. The starting torque of an indication motor is maximum when
a) Rotor resistance equals rotor reactance

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
b) Rotor resistance is twice the rotor reactance
c) Rotor resistance is half the rotor reactance
d) Rotor resistance is R_{2} times the rotor reactance
11.In a shaded pole motor, the locked rotor current is
a) 10 times the full load current
b) 4 to 5 times the full load current
c) slightly more than the full load current
d) less than the full load current.
12. A capacitor motor of $1 / 4 \mathrm{HP}$ needs a condenser of $8 \mu \mathrm{~F}$. A similar motor of $3 / 4 \mathrm{HP}$ will need a condenser of
a) $\mathbf{2 0} \mu \mathrm{F}$
b) $8 \mu \mathrm{~F}$
c) $2 \mu \mathrm{~F}$.
d) $3 \mu \mathrm{~F}$
13. The rotor of which motor does not have winding on it ?
a) Universal motor
c) Reluctance motor
b) Hysteresis motor
d) Repulsion motor.
14. Which motor has unsymmetrical rotor?
a) Universal motor
c) Split-phase motor
b) Shaded pole motor
d) Reluctance motor.
15. If a single phase motor runs slow, the probable case may be
a) overload
c) low voltage
b) low frequency
d) any of the above.
16. A single phase capacitor start motor will take starting current nearly
a) same as full load current
b) twice the full load current
c) three times the full load current
d) four the six times the full load current.
17. Which motor will make least noise ?
a) Capacitor motor
c) Shaded pole motor
b) Universal motor
d) Hysteresis motor.
18. Shaded pole motors are not provided with
a) capacitor
c) commutator
b) centrifugal switch
d) all of the above.
19. In a universal motor, normally the ratio of width of brush to the width of commutator segments is
a) $1: 1$
b) $1: 2$
c) $2: 1$
d) $4: 1$.
20. For a given output and speed, a universal motor as compared to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply will require
a) less voltage at low frequency
c) high voltage at high frequency
b) less voltage at high frequency
d) high voltage at low frequency.
21.The short coming of repulsion motor is

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) variation of speed with load
c) tendency to spark at brushes
b) low power factor
d) all of the above.
22..The disadvantage of shaded pole motor is
a) low starting torque'
c) very little over load capacity
b) low efficiency
d) all of the above.
23.. The efficiency of shaded pole motor is in the range
a) 80 to 95 percent
b) 70 to 80 percent
c) 50 to 70 percent
d) 5 to 35 percent.
24.For domestic sewing machine the size of the motor required will be
a) $10-15$ watts
c) $\mathbf{1 0 0 - 1 5 0}$ watts
b) 15-25 watts
d) 250 to 750 watts.
25. A ceiling fan of 1400 mm sweep will have motor rating of
a) to 15 watts
c) $\mathbf{1 2 0}$ to $\mathbf{1 8 0}$ watts
b) 50 to 70 watts
d) 250 to 500 watts.
26. Which of the following applications would need the smallest size of motor
a) Domestic motor
c) Table fan
b) Electric clock
d) Sewing machine.
27. All single phase ac motors are designed to operate usually on
a) 220 V only
b) $220 \mathrm{~V}+10 \mathrm{~V}$
c) $220 \pm 0 \mathrm{~V}$
d) $\mathbf{2 2 0} \pm \mathbf{1 0 \%}$ volts.
28. All single phase ac motors are designed usually to operate on the frequency
a) 50 Hz
b) $50 \pm 0.5 \mathrm{~Hz}$
c) $50 \pm 1 \mathrm{~Hz}$
d) $50 . \pm 5 \mathrm{~Hz}$.
29. When a dc series motor is connected to ac supply, it will
a) spark excessively
c) run on poor power factor
b) give poor efficiency
d) all of the above.
30.The torque-speed characteristic of a repulsion motor resembles that of which of the following dc motor ?
a) separately excited motor
c) series is motor
b) shunt motor
d) compound motor.
31. In a single phase capacitor motor the direction of rotation will be in the opposite direction to the original when
a) electrolytic capacitor is replaced by paper capacitor
b) two capacitors of equal value are used
c) capacitor is replaced by a resistance
d) capacitor is replaced by an inductor.
32.In a hysteresis motor, the position of shaded pole with respect to main pole determines
a) speed of motor
c) hysteresis loss
b) direction of rotation
d) no load rpm
33. In a shaded pole motor, the direction of rotation is from
a) main pole to shaded pole
b) shaded pole to main pole
c) depends on supply line polarity.

Prepared By: Prof. P. A. Shinde (Department of Electrical Engineering)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt, of Maharashtra, Mumbai.
d) None of the above
34. Which motor is generally used in tape recorders?
a) Universal motor
c) Split phase motor
b) Reluctance motor
d) Hysteresis motor.
35. In a shaded pole motor, shading coils are used to
a) reduce windage losses
b) reduce friction losses
c) produce rotating magnetic field
d) to protect against sparking.
36.The type of starting relay used on single phase hermetic motor is
a) hot wire relay
c) current coil relay
b) timing relay
d) voltage coil relay
37. Reluctance motors are
a) doubly excited
b) singly excited
c) either doubly excited or singly excited
d) none of the above.
38. Electric motors are generally designed to have maximum efficiency at
a) full load
c) half load
b) near full load
d) near half load.
39. Which of the following is non-reversible motor?
a) Universal motor
b) Capacitor start split phase motor
c) Resistance start split phase motor
d) Permanent split capacitor motor.
40. Which motor is generally used for electric shavers ?
a) Shaded pole motor
c) Reluctance motor
b) Hysteresis motor
d) Universal motor.
41. The motor useful for signaling and timing device is
a) Reluctance motor
c) Hysteresis motor
b) Shaded pole motor
d) Two value capacitor motor
42. A motor generally used in toys is
a) Hysteresis motor
c) Two value capacitor motor
b) Shaded pole motor
d) Reluctance motor.

Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

6. Protective Devices and Switchgear

Position in Question Paper
Total Marks-12
Q.1. g) 2-Marks.
Q.3. d) 4-Marks.
Q.6. c) 6-Marks.

Descriptive Question

1. List the types of Fuses.
2. Explain pipe earthing with a neat labeled diagram.
3. State the function of the fuse and material used for fuse.
4. Explain the need of earthing in electrical systems.
5. State the types of earthing and any two advantages of earthing.
6. Explain with neat diagram, operation of ELCB and two applications.
7. State function of ELCB.
8. List any two factors that affect earthing.
9. Write any four major points related to rewirable fuse
10.With neat sketch explain principle of operation of ELCB. Write any two applications of it.
11.State any three methods of reducing earthing resistance
10. Write any three major points related to IE rules relevant to earthing.
11. State any four abnormal conditions which can develop in power system and state its effect on power system

MCQ Question

(Total number of Question=Marks* $3=12 * 3=36$)
Note: Correct answer is marked with bold

1. The main function of a fuse isto
a) protect theline
c) protect theappliance
b)open thecircuit
d)prevent excessivecurrents
2. On which of the following routine tests are conducted?
a) Oil circuitbreakers
c) Minimum oil circuitbreakers
b) Air blast circuitbreakers
d)All of the above
3. SF6gas
a) is yellow incolour
c) isnontoxic
b) is lighter thanair
d) has pungentsmall

RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
4. The arcing contacts in a circuit breaker are madeof
a) copper tungstenalloy
c) electrolyticcopper
b) porcelain
d) aluminium alloy
5. Which of the following medium is employed for extinction of arc in air circuit breaker?
a) Water
c) Air
b) Oil
d) SF
6. With which of the following, a circuit breaker must be equipped for remote operation?
(a) Inverse time trip
(c) Shunt trip
(b) Time-delay trip
(d) None of the above
7. Fault diverters are basically
a) fuses
c) fastswitches
b) relays
d) circuit breakers
8. A thermal protection switch can protect against
a) short-circuit
c) overload
b) temperature
d) over voltage
9. Arc in a circuit behaves as
a) a capackivereactance
b) an inductive reactance
c) a resistance increasing with voltage rise across the arc
d) a resistance decreasing with voltage rise across the arc
10. Thermal circuit breakerhas
a) delayed trip action
c) both of the above
b) instantaneous trip action
d) none of the above
11. Overload relays are of type.
a) induction
c) thermal
b) solid state
d) all above
12. Thermaloverloadrelaysareusedtoprotectthemotoragainstovercurrentdueto
a) short-circuits
c) grounds
b) heavy loads
d) all of the
13. Magnetic circuit breaker has trip action.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) delayed
c) both of theabove
b) instantaneous
d) none of the
14. D.C. shunt relays are made of
a) few turns of thin wire
c) many turns of thin wire
b) few turns of thick wire
d) none of these
15. many turns of thick wire The relay operating speed depends upon
a) the spring tension
c) armature core air gap
b) the rate of flux built up
d) all of the above
16. In order that current should flow without causing excessive heating or voltage drop, the relay contacts should
a) have low contact resistance
b) be clean and smooth
c) be of sufficient size and proper shape
d) have all above properties
17. Circuit breakers usually operate under
a) transient state of short-circuit current
b) sub-transient state of short-circuit current
c) steady state of short-circuit current
d) after D.C. component has ceased
18. Circuit breakers are essentially
a) current carrying contacts called electrodes
b) arc extinguishers
c) circuits to break the system
d) transformers to isolate the two systems
19. The current zero interruption, in oil and air blast circuit breakers, is achieved by
a) lengthening of the gap
b) cooling and blast effect
c) both (a) and(b)
d) demonizing the oil with forced air
20.To prevent overload and overheating of wires
a) fuses are used
b) circuit breakers are used
c) fuses and circuit breakers are used
d) fuses and resistor are used
21.The magnetic field of the coil and the permanent magnet
a) attract each other
c) combine with each other
b) repel each other
d) stay with each other
22.ELCB is an abbreviation of
a) electrolytic circuit breaker
c) earth leakage circuit breaker
b) earth locking circuit breaker
d) electric leakage circuit breaker
23.Electricity is required to
a) light up homes
c) flush the toilet
b) clean your car
d) change weather

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
24.A block of impure copper is used as
a) cathode
c) posit rode
b) anode
d) nematode
25.Miniature circuit breaker is a small
a) fuse
c) electromagnetic switch
b) magnetic switch
d) two way switch
26. Which of the following circuit breaker can be installed on 400 kV line
a) Tank type oil circuit breaker
b) Miniature circuit breaker
c) Vacuum circuit breaker
d) Air blast circuit breaker.
27.Out of the following circuit breakers, which one has the lowest voltage range ?
a) Air-break circuit breaker
c) Air-blast circuit breaker
b) Tank type oil circuit breaker
d) SF_{6} circuit breaker.
28. In a vacuum circuit breaker, the vacuum is of the order of
a) 10 mm Hg
b) $10^{-2} \mathrm{mmHg}$
c) $10^{-6} \mathrm{mmHg}$
d) $\mathbf{1 0} 0^{-9} \mathbf{m m H g}$.
29. In modem EHV circuit breakers, the operating time between instant of receiving trip signal and final contact separation is, of the order of
a) 0.001 sec
b) 0.015 sec
c) 0.003 sec
d) 0.03 sec .
30. In a HRC fuse the time between cut-off and final current zero, is known as
a) total operating time
c) pre-arcing time
b) arcing time
d) any of the above
31. Low voltage circuit breakers have rated voltage of less than
a) 220 V
b) 400 V
c) 1000 V
d) $10,000 \mathrm{~V}$.

32 .The fault clearing time of a circuit breaker is usually
a) few minutes
c) one second
b) few seconds
d) few cycles of supply voltage

33 .The medium employed for extinction of arc in air circuit breaker is
a) SF_{6}
c) $\mathbf{A i r}$
b) Oil
d) Water.
34. Which of the following circuit breakers is preferred for EHT application
a) Air blast circuit breakers
c) Bulk oil circuit breakers
b) Minimum oil circuit breakers
d) SF_{6} oil circuit breakers.

35 .For high voltage, ac circuit breakers, the rated short circuit current is passed for
a) 0.01 sec
b) 0.1 sec
c) $\mathbf{3}$ seconds
d) 20 seconds
36.A circuit breaker is
a) power factor correcting device
b) a device to neutralize the effect of transients
c) a waveform correcting device
d) a current interrupting device.

