Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

Subject: - Meckanical working drawing

 (22341)Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

(-)

Chapter No.	Name of chapter	Marks With Option
1	Development of surfaces	18
2	Conventional representation	21
3	Production drawing	08
4	Details to assembly	14
5	Assembly to details	32
6		

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
BOARD THEORY PAPRR PAFTRRN

Q. 1		Attempt any FIVE 5*2=10	
	a)	Conventional representation	
	b)	Conventional representation	
	c)	Conventional representation	
	d)	Conventional representation	
	e)	Production drawing	
	f)	Production drawing	
	g)	Production drawing	
Q. 2		Attempt any ONE 2*7=14	
	a)	Intersection of solids	
	b)	Intersection of solids	
	c)	Intersection of solids	
Q. 3	A	Attempt any ONE 1*4=08	
	a)	Production drawing	
	b)	Production drawing	
Q. 3	B	Attempt any TWO 2*6=12	
	a)	Development of surfaces	
	b)	Development of surfaces	
	c)	Development of surfaces	
Q. 4		Attempt any following compulsory (Assembly to details)	1*16=16
Q. 5		Attempt any one 1*16=16	
	a)	Details to assembly	
	b)	Details to assembly	

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

PAP宣R PATVFRN

Syllabus:-

Unit No.	Name of the Unit	Course Outcome $(\mathbf{C O})$
1	Development of surfaces	$\mathbf{C O - 3 4 1 . 0 1}$
2	Intersection of solids	$\mathbf{C O - 3 4 1 . 0 2}$
3	Conventional representation	$\mathbf{C O - 3 4 1 . 0 3}$

Q.1	Attempt any THREE	$\mathbf{3 * 2 = 6 M a r k s}$
a)	Conventional representation	Course Outcome (CO)
b)	Conventional representation	CO-341.03
c)	Conventional representation	CO-341.03
d)	Conventional representation	CO-341.03
Q.2	Attempt any ONE	CO-341.03
a)	Development of surfaces	$\mathbf{1 * 7 = 7}$ Marks
b)	Development of surfaces	CO-341.01
Q.2	Attempt any ONE	CO-341.01
a)	Intersection of solids	CO-341.02
b)	Intersection of solids	CO-341.02

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Syllabus:-

Unit	Name of the Unit	Course Outcome (CO)
3	Production drawing	$\mathrm{CO}-341.04$
4	Details to assembly	$\mathrm{CO}-341.05$
5	Assembly to details	$\mathrm{CO}-341.06$

Q.1	Attempt any ONE	$\mathbf{1 * \mathbf { 4 } = \mathbf { 4 M a r k s }}$Course Outcome $\mathbf{(C O})$
a)	Production drawing	CO-341.04
b)	Production drawing	$\mathbf{1 * 7 = 8 M a r k s}$
Q.2	Attempt any ONE	CO-341.04
a)	Details to assembly	CO-341.05
b)	Details to assembly	CO-341.05
Q.2	Attempt any ONE	$\mathbf{1 * 7 = \mathbf { 8 M a r k s }}$
a)	Assembly to details	CO-341.06
b)	Assembly to details	CO-341.06

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

COUNSE OUTCOME ((Co)

COURSE:- Mechanical Working Drawing (22341)

PROGRAMME: - ALL

CO.NO	Course Outcome
CO-103.1	Draw Development of lateral surface of various solids
CO-103.2	Draw intersection of curves of different solids
CO-103.3	Use various drawing codes, convention \& their symbol
$\mathbf{C O - 1 0 3 . 4}$	Use Production drawing, used for produce for products
$\mathbf{C O - 1 0 3 . 5}$	Draw assembly of product
$\mathbf{C O - 1 0 3 . 6}$	Draw Details of product

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY

1. Development of surfaces (Total Marks =08)

Position in Question Paper
Total Marks-12

Q.3.B. a) 6-Marks.

b) 6-Marks.

Descriptive Question

1. A vertical cylinder of 70 mm diameter is penetrated by another cylinder of 50 mm diameter. The axis of the penetrating cylinder is parallel to both H.P. and V.P. and is 8 mm away from the axis of the vertical cylinder. Draw its projections showing curves of intersection.
2. A vertical cylinder of diameter of 70 mm and height 100 mm is completely penetrated by a horizontal square prism of side 50 mm and length 110 mm . The axis of the prism bisects the axis of the cylinder. All the rectangular faces of the prism are equally inclined to H.P. Draw Front View, Top View and side view
3. A cone with base diameter 80 mm and axis height 75 mm is kept on the H.P. on its base. It is penetrated by a horizontal cylinder of diameter 40 mm with its axis parallel to V.P. and intersecting the axis of the cone at a distance of 25 mm above the base of the cone. Draw the projections solid showing curves of intersection.
4. Draw the development of the lateral surface of the cylinder having a square hole in it as shown in the Fig.

5. Draw the development of lateral surface of Part ' A ' and Part ' B ' of a

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
right angle elbow shown in Fig

6. square prism of base side 40 mm and height 80 mm rests on HP with all faces equally inclined to VP. It is cut by a plane perpendicular to VP and 60° inclined to HP passing through a point on axis 55 mm from base. Draw development of lateral surface of the prism.
7. A cone of base diameter 60 mm and 70 mm long axis rests on HP on its base. It is cut by a section plane perpendicular to VP and inclined 45° to HP passing from a point on axis 35 mm from apex. Draw development of lateral surface of cone.
8. Develop lateral surface of 90° elbow. Each pipe diameter is 60 mm . Maximum length of each leg is 80 mm .
9. A cone resting on H.P is having diameter of base. 45 mm and height 60 mm . If is cut by a vertical plane perpendicular to V.P and 10 mm away from the axis of cone. Draw the development of lateral surface of the cone.
10. Fig. shows a right circular cylinder of diameter 60 mm and height of axis 100 mm it i cut as shown. Draw the development of its lateral surface

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

MCQ Question
 (Total number of Question=Marks*3=8*3=24)

1. When the complete surface of an object laid down on a \qquad surface, it is known as its development.
a. Flat
c. Curved
b. Spherical
d. None of the above
2. Rectangular prism is an example of \qquad
a. objects having isometric lines
c. object having non-isometric lines
3. The development of a right cylinder will be
a. Parallelogram
b. Rectangle
c. Circle
d. Rhombus
4. Following is the application of Development of surface
a. Making of Boiler
c. Both (A) and (B)
b. Making of Chimney
d. None of the above
5. The development of a right prism will be
a. Parallelogram
c. Rectangle
b. Circle
d. Rhombus
6. Following method is used for Development of Right Cylinder
a. Radial line method
c. Approximate Method
b. Parallel line method
d. All of the above
7. Following method is used for Development of Right Prism
a. Radial line method
(C) Approximate Method
b. Parallel line method
(D) All of the above
8. Following method is used for Development of Sphere
a. Zone method
c. Both (A) and (B)
b. Lune method
d. None of the above
9. The lateral surface of right cylinder of diameter 30 mm and height of axis 60 mm is developed, we get
a. Square of each side 60 mm
c. Rectangle of $94 \mathrm{~mm} \times 60 \mathrm{~mm}$
b. Rhombus of each side 60 mm
d. None of the above
10. The lateral surface of right regular pentagonal prism of each base edge 20 mm and height of axis 60 mm is developed, we get
a. Square of each side 100 mm
c. Rectangle of $100 \mathrm{~mm} \times 60 \mathrm{~mm}$
b. Rhombus of each side 60 mm
d. None of the above
11. Triangulation Method \qquad
a. It is employed for pyramids

pieces

b. It is used for developing prisms
d. None of these
c. It is used for developing transition
12. Which method of development is employed in case of double curved objects?
a. Parallel-line development
b. Approximation method

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
13. Which method of development is employed in case of sphere, ellipsoid?
a. Parallel-line development
c. Triangulation development
b. Approximation method
d. Radial-line development
14. The development of the lateral surface of a cylinder is a rectangle having one side equal to the \qquad of its base-circle and the other equal to its length.
a. circumference
c. diameter
b. area
d. radius
15. The development of the curved surface of a cone is a \qquad of a \qquad
a. sector, circle
c. segment, ellipse
b. segment, circle
d. arc, parabola
16. The development of the surface of a cube consists of \qquad equal squares, the length of the side of the squares being equal to the length of the edge of the cube.
a. 4
b. 6
c. 12
d. 8
17. The development of lateral surface of a pyramid consists of a number of equal triangle in contact.
a. equilateral
c. scalene
b. isosceles
d. right angled
18. Knowledge of Development of surfaces of solids is required for fabrication of
a. Pipe work
c. Containers
b. Ducts
d. All of the above
19. The front view obtained on the development of a square pyramid from its plan and front elevation which stands vertically on its base on H.P with one edge of the base parallel to V.P?
a. Square
c. Trapezium
b.Triangle
d. Rectangle
20. The shape of the development of the surface shown will be as a \qquad

a. Cube
c. Triangular prism
b. Cuboid
d. Cone
21. For a cone, the front view will be a \qquad with the slant edge showing the true length of the generator of the cone.
a) Square
c) Triangle
b) Rectangle
d) Circle
22. The development of lateral surfaces of a pentagonal pyramid is \qquad
a. Five rectangles
b.Five squares

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai

c. Five triangles

d. Five circles
23. Zone method is used to develop
a. prism
c. cone
b. pyramid
d. sphere
24. The top view obtained by the development of a square pyramid from its plan and front elevation which stands vertically on its base on H.P with one edge of the base parallel to V.P. will be?
a.Triangle
c.Trapezium
b. Square
d.Circle

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

2. Intersection of solids (Total Marks =14)

Position in Question Paper

Total Marks-18
Q.2. a) 6-Marks.
b) 6-Marks.
c) 6-Marks.

Descriptive Question

1. A vertical cylinder 85 mm diameter is penetrated by another cylinder of 60 mm diameter, the axis of which is parallel to both H.P. and V.P. The two axes are 8 mm apart. Draw the projections showing curves of intersection.
2. A vertical square prism base 50 mm side has its faces equally inclined to V.P. It is completely penetrated by another square prism of base 30 mm side, the axis of which is parallel to both H.P. and V.P. and is 6 mm away from the axis of the vertical prism. The faces of horizontal prism are also equally inclined to the V.P. Draw the projections of solids showing the lines of intersection.
3. A square hole of 35 mm side is cut in a cylindrical shaft 75 mm diameter and 125 mm long. The axis of the hole intersects that of the shaft at right angles. All faces of the hole are inclined at 45 degree to the H.P. Draw the three views of the shaft when the plane of the two axes is parallel to the V.P.
4. A vertical cylinder of 70 mm diameter is penetrated by another cylinder of 50 mm diameter. The axis of the penetrating cylinder is parallel to both H.P. and V.P. and is 8 mm away from the axis of the vertical cylinder. Draw its projections showing curves of intersection.
5. A vertical cylinder of diameter of 70 mm and height 100 mm is completely penetrated by a horizontal square prism of side 50 mm and length 110 mm . The axis of the prism bisects the axis of the cylinder. All the rectangular faces of the prism are equally inclined to H.P. Draw Front View, Top View and Side View showing the curves of intersection.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
6. A cone with base diameter 80 mm and axis height 75 mm is kept on the H.P. on its base. It is penetrated by a horizontal cylinder of diameter 40 mm with its axis parallel to V.P. and intersecting the axis of the cone at a distance of 25 mm above the base of the cone. Draw the projections solid showing curves of intersection
7. A cone with base diameter 80 mm and axis height 75 mm is kept on the H.P. on it's base. It is penetrated by a horizontal cylinder of diameter 40 mm with it's axis parallel to V.P. and intersecting the axis of the cone at a distance of 25 mm above the base of the cone. Draw the projections of solid showing curves of intersection.
8. A vertical square prism side of base 35 mm and 80 mm long has it's vertical faces equally inclined to V.P. It is penetrated by another square prism side of base 35 mm and axis length 80 mm so flat it's axis parallel to both H.P. and V.P. and is 10 mm in front of the axis of the vertical prism. The faces of the penetrating prism are equally inclined to H.P. Draw the projections of the prisms showing lines of intersection.
9. A vertical square prism 50 mm side of base and 100 mm long having it's faces equally inclined to the V.P. is completely penetrated by a horizontal cylinder 40 mm diameter and 100 mm long the axis of which is parallel to V.P. and 6 mm away from that of axis of prism. Draw the projections of the solids showing curves of intersection
10. A cone with base diameter 70 mm \& axis height 65 mm is kept on HP on its base. It is penetrated by a horizontal cylinder of diameter 35 mm with its axis parallel to VP \& intersecting axis of cone at distance of 20 mm above base of cone. Draw projection of solid showing curve of intersectio

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

MCQ Question

(Total number of Question=Marks* $3=14 * 3=42$)

1. A cylinder 50 mm dia. and 70 mm axis is completely penetrated by a triangular prism of 45 mm sides and 70 mm axis, horizontally. One flat face of prism is parallel to Vp and Contains axis of cylinder. Draw projections showing curves of intersections.
a. Triangle with a circle
c. Cylinder with a circle
b.Cylinder with a triangle
d. Circle with a cylinder
2. The \qquad planes are so selected as to cut the surface of one of the solids in straight lines and that of the other in straight lines or circles.
a. line
c. horizontal
b. cutting
d. xy
3. The three lines meeting at a point and making an angle of 1200 with each other is called \qquad
a. isometric axes
c. orthographic axes
b. axonometric
d. oblique axes
4. The plane surfaces intersect in a \qquad the line of intersection between two curved surfaces is \qquad and between a plane surface and curved surfaces is a \qquad
a. straight line, curve, curve
c. straight line, curve, straight line
b.straight line, straight line, curve
d. curve, curve, curve
5. The line of intersection formed is straight line while two solids are intersecting the solids may be \qquad
a. prism, cylinder
c. pyramid, cone
b. prism, cone
d. prism, pyramid
6. The line of intersection formed is curve while two solids intersect the solids may be
a. cube, triangular prism
c. triangular pyramid, cube
b. pentagonal prism, cone
d. triangular prism, square pyramid
7. A prism and cylinder got intersected at 90 degrees the line of intersection will be \qquad and parallel to axis of \qquad
a. straight line, prism
c. straight line, cylinder
b. curve, prism
d. curve, cylinder
8. The line of intersection formed is straight line while two solids are intersecting the solids may be \qquad
a. cube, cylinder
c. pyramid, cuboid
b prism, cone
d. cube, cone
9. Selecting of a particular plane in a series of planes drawn cutting the solid either parallel, perpendicular or oblique which cut the surface of one of the solids in straight lines and that of the other in straight lines or circles. This is called \qquad method.
a. assumption
c. removing material
b. line
d. cutting- plane

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
10. The surfaces of which intersect one another in lines which are called line of intersection.
a. True
b.False
11. The red, blue curve in the figure (shown below) represents \qquad

a. welding
c. fitting
b. joining
d. curve of intersection
12. The figure (4-sided) below represents the intersection of \qquad

a. triangular prism standing and Triangular prism penetrating
b. cylindrical prism standing and square prism penetrating
c. sq. prism standing and square prism penetrating
d. triangular prism standing and Square prism penetrating
13. The figure (4-sided) below represents the intersection of \qquad

a. triangular prism standing and Triangular prism penetrating
b. cylindrical prism standing and square prism penetrating
c. triangular prism standing and Square prism penetrating
d. cone standing and square prism penetrating
14. This type of solid has two bases that are parallel equal polygons:
a. pyramid
c. cone
b. prism
d. torus

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
15. The solid having a polygon for a base and triangular lateral faces intersecting at a vertex is
a. pyramid
b. cone
b. prism
D) torus
16. Among the following solids, a regular polyhedron is
a. square prism
c. cube
b. square pyramid
d. sphere
17. A solid having minimum number of faces is
a. tetrahedron
c. square pyramid
b. triangular prism
d. cube
18. The number of face in a tetrahedron are
a. 4
b. 8
c. 12
d. 20
19. The number of stages that are necessary to get the orthographic views of a solid having its axis inclined to both reference planes is
a. 1
b. 2
c. 3
d. 4
20. A tetrahedron is resting on its face on the H.P. with a side perpendicular to the V.P. Its front view will be
a. equilateral triangle
c. scalene triangle
b. isosceles triangle
d. right-angle triangle
21. A square pyramid is resting on a face in the V.P. The number of dotted lines which will appear in the front view is
a. 1
b. 2
c. 3
d. 4
22. The solid, which will have two dotted lines in the top view when it is resting on its face in the H.P. is
a. square pyramid
c. hexagonal pyramid
b.pentagonal pyramid
d. all of these
23. A cube is resting on the H.P. with a solid diagonal perpendicular to it. The top view will appear as
a. square
c. irregular hexagon
b. rectangle
d. regular hexagon
24. A right-circular cone resting on a point of its base circle in the H.P. has the axis inclined at 30° to the H.P. and 45° to the V.P. The angle between the reference line and top view of the axis will be
a. 30°
c. 45°
b. between 30° and 45°
d. more than $\mathbf{4 5}^{\circ}$
25. A right-circular cone resting on a generator in the H.P. has the axis inclined at 30° to the H.P. and 45° to the V.P. The angle between the reference line and top view of the axis will be
a. less than 45°
c. more than $\mathbf{4 5}^{\circ}$
b. 45°
d. any of these
26. A cylinder rests on a point of its base circle in the H.P., having the axis inclined at 30° to the H.P. and 60° to the V.P. The inclination of the top view of the axis with the reference line will be

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
a. 30°
c. 90°
b. 60°
d. none of these
27. A cutting plane cut the cone such a way that true shape of cutting portion is seen as triangle when cutting plane is cut the base and passed through
a. midpoint of axis
c. generator of cone
b. apex of cone
d. any point on axis
28. Another name for a cube is a
a. hexahedron
c. icosahedron
b. tetrahedron
d. octahedron
29. Another name for a tetrahedron is a
a. triangular prism
c. triangular pyramid
b. square prism
d. square pyramid
30. \qquad cone has two planar surfaces parallel to each other.
a. truncated
c. right
b. frustum
d. oblique
31. The solid having a polygon for a base and triangular lateral faces intersecting at a vertex is
a. pyramid
c. cone
b. prism
d. torus
32. Name the solid formed by four equilateral triangle
a. Square pyramid
c. Tetrahedron
b. Triangular pyramid
d. Square prism
33. A cylinder standing on the HP is cut by a vertical plane parallel to the axis and away from it. The shape of the section will be
a. Rectangle
c. Ellipse
b. Circle
d. Hyperbola
34. When the axis of the solid is parallel to both HP and VP the view which reveals the true shape of the base is
a. Front view
c. Side view
b. Top view
d. None of these
35. Name the solid formed by revolving right angle triangle with one of its perpendicular side fixed
a. Cone
c. Tetrahedron
b. Cylinder
d. Octahedron
36. When the cone, resting on base on V.P., is cut by section plane parallel to V.P. then the true shape is \qquad and can be seen in \qquad view.
a. Circle, Front
c. Ellipse, Top
b. Ellipse, Front
d. Circle, Top
37. To obtain the true shape of the section of solid, an auxiliary plane is set
a. Inclined at an 45° to acutting plane
c. Parallel to a cutting plane
b. parallel to XY
d. perpendicular to a cutting plane
38. A vertical cone, diameter of base 75 mm and axis 100 mm long, is completely penetrated by a
cylinder of 45 mm diameter. The axis of the cylinder is parallel to HP and VP and intersects the axis of the cone at a point 22 mm above the base. Draw the projections of the solids showing curves of intersection. Ans is \qquad
A)

B)

C)

D) None of above
39. A vertical square prism, base 50 mm side, is completely penetrated by a horizontal square prism, base 35 mm side, so that their axes intersect. The axis of the horizontal prism is parallel to the prism, while the faces of the two prisms are equally inclined to the prism. Draw the projections of the solids, showing lines of intersection. (Assume suitable lengths for the prisms.)
A)

B)

C)

D) None of above
40. A vertical cylinder of 80 mm diameter is completely penetrated by another cylinder of 60 mm diameter, their axes bisecting each other at right angles. Draw their projections showing curves of penetration, assuming the axis of the penetrating cylinder to be parallel to the VP.
A)

B)

C)

D) None of above
41. A vertical cylinder with a 60 mm diameter is penetrated by a horizontal square prism with a 40 mm base side, the axis of which is parallel to the VP and 10 mm away from the axis of the cylinder. A face of the prism makes an angle of 30° with the HP. Draw their projections showing curves of intersection.
A)

B)

C)

D)

42. A cone with a base diameter of 64 mm and an axis length of 70 mm is kept on its base on the HP. A cylinder of diameter 30 mm and length 90 mm penetrates the cone horizontally. The axis of the cylinder is 20 mm above the base of the cone and 5 mm away fromthe axis of the latter. Draw the three views of the solids showing curve of intersection.
A)

B)

C)

D)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

3. Conventional Representation (Total Marks =08)

Position in Question Paper
Q.1. a) 2-Marks.
b) 2-Marks.
c) 2-Marks.
d) 2-Marks

Descriptive Question

1. Draw the conventional representation of the following :
(i) Cylindrical helical compression spring of wire of circular cross-section
(ii) Semi-elliptic leaf spring.
2. Draw a part showing fillet radius and chamfered edge.
3. Draw the conventional representation of :
(i) Spur gear
(ii) Bevel gear.
4. Draw the actual view and conventional representation of
(i) External screw thread
(ii) Straight knurling.
5. Draw the conventional representation of the following :
(i) I-section or rolled section
(ii) Long Break in pipe
6. Draw the conventional representation for common feature.
(i) Radial Ribs
(ii) Bearings
7. Draw the actual sketch of Counter Bore and Counter Sunk hole.
8. Draw the actual sketch and conventional representation :
(i) Spiral Spring
(ii) Semi-elliptic leaf spring with eyelets.
9. Draw the conventional representation for common feature

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
(a) Revolved section
(b) Splined shaft
(c) Worm gear
(d) Internal thread
(e) Compression spring with square section
(f) Roller bearing
(g) Globe valve
9. Draw conventional representation for any SIX of the following : 12
(i) Steel
(ii) Diamond knurling
(iii) Helical spring with flat end
(iv) Bevel gear
(v) I-section
(vi) Ball and Roller bearing
(vii) Gate valve
(viii) Internal screw thread
10. Draw Conventional representation for any SIX of the following : 12
(a) Offset section
(b) Globe valve
(c) Diamond Knurling
(d) Leaf spring with eyes and central Band
(e) Wood
(f) Spur gears
(g) Counter bored holes
(h) Ball and Roller beari

MCQ Question

(Total number of Question=Marks*3=8*3=24)

1. When four pipes are joined, then \qquad is used
a. Elbow
c. Cross
b. Tee
d. None of above
2. Draw Conventional representation wood \qquad
a.

c.

b.

d. None of above
3. Conventional representation Glass is \qquad
a.

c.

b.

d.

4. Conventional representation Cast iron is \qquad
a.

c.

b.

d

5. Conventional representation Concrete is \qquad
a.

c.

b.

d. \square
6. Conventional representation Splined shaft is \qquad
a.

c.

b.

d.
ㅌㅋ
7. Conventional representation Leaf spring is \qquad

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
a.
b.

c.

d. ${ }^{\text {W }} \square$
8. Conventional representation Bearing is \qquad
a.

b.

c.

d. ${ }^{*}$ ت
9. Conventional representation Tee joint is \qquad
a.

c.

b.
d. ${ }^{\psi} \mp \neq$
10. Conventional representation Reducing socket is \qquad
a.

c.

b.

d. \square
11. Conventional representation of Straight Knurling \qquad
a)

c)

b)

d)

12. Conventional representation of Diamond Knurling \qquad
a)

c)

b)

d)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
13. Conventional representation of Squared on shaft \qquad
a)

c)

b)

d)

14. Conventional representation of Holes on circular shaft \qquad
a)

c)

b)

d)

15. Conventional representation of Rectangular (metal)Section
a)

c)

b)

d)

16. Conventional representation of Pipe or Tubing Section
a)

\square
c)

b)

d)

17. Conventional representation of Round section \qquad
a)

c)

b)

(i)
d)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
18. Conventional representation of Rectangular wood section
a)

c)

b)

d)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

4. Production Drawing (Total Marks =10)

Position in Question Paper
Total Marks- 10
Q.1. e) 2-Marks.
f) 2-Marks.
g) 2-Marks.
Q.3. A) 4-Marks.

Descriptive Question

1. State the meaning of the symbol shown in Fig.

2. State the meaning of symbols shown in the Fig.

3. Refer Fig. and state the meaning of symbol at X .
4. Refer Fig. and state the meaning of symbol X and Y .

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
5. Define : (i) Allowance (ii) Clearance (iii) Interference (iv) Deviation
6. Write the symbol for light press fit, and give its two applications.
7. A bush bearing has internal diameter $\quad \phi 25^{+0.000}$ and the shaft diameter is
-0.020
$\phi 25^{-0.040}$. Find the minimum and maximum clearance and identify the type of fit between bush and shaft.
8. A bush bearing has internal diameter $\quad 50^{+0.280}$ and the shaft diameter is $50 \begin{gathered}+0.090 \\ 50.000\end{gathered}$. Find the minimum and maximum clearance and identify the type of fit between bush and shaft.
9. Draw a sketch showing basic size, lower deviation, upper deviation and tolerance.
10. Draw the symbols representing the characteristics to be tolerance.
(i) Circularity
(ii) Cylindricity.
11. Draw the symbol for the following
(i) Concave fillet weld
(ii) Seam Weld
(iii) Flat Single V butt Weld
(iv) Square butt weld
12. Draw the symbol of the following:
(i) Square butt
(ii) Double J-butt
(iii) Spot weld
(iv) Convex fillet weld

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
13.Write the symbol for light press fit, and give its two applications.

$\phi 25^{-0.040}$. Find the minimum and maximum clearance and identify the type of fit between bush and shaft.
15. A bush bearing has internal diameter $\quad \begin{gathered} \\ 50^{+0.280}\end{gathered}$ and the shaft diameter is $50 \begin{gathered}+0.090 \\ +0.000\end{gathered}$. Find the minimum and maximum clearance and identify the type of fit between bush and shaft.
16. Draw a sketch showing basic size, lower deviation, upper deviation and tolerance.
17. Draw the symbols representing the characteristics to be tolerance.
(i) Circularity
(ii) Cylindricity.
18. Draw the symbol for the following
(i) Concave fillet weld
(ii) Seam Weld
(iii) Flat Single V butt Weld
(iv) Square butt weld
19. Draw the symbol of the following :
(v)Square butt
(vi)Double J-butt
(vii)Spot weld
(viii) Convex fillet weld

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
20. Refer Fig. 3. What is the meaning of at ' x ' and ' y '

21. Two mild steel plates of 8 mm thickness are to be welded to have a lap joint by a fillet weld of leg length 8 mm . Represent the weld on drawing with proper symbols.
22. Represent a welding drawing of A right circular cylinder is to be welded to a steel plate at right angles to it, with all round fillet weld of 6 mm leg length.
23. Represent the welding drawing of two shafts with equal diameter welded end to end by means of square butt weld with convex counter of site.

MCQ Question

(Total number of Question=Marks*3=10*3=30)

1. Which of the following is not a classification of fit?
a. Clearance
c. Interference
b. Transition
d. Enjoining
2. Which of the following always provides a positive clearance between the hole and the shaft over the entire range of tolerances?
a. Clearance
c. Interference
b. Transition
d. None of the mentioned

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
3. Tolerance for a shaft of 50 mm diameter as the basic size, with the fundamental deviation denoted by g and tolerance of grade 7 is represented as?
a.g50,7
c. 7 g 50
b. 50 g 7
d. None of the mentioned
4. Why tolerances are given to the parts?
a) Because it's impossible to make perfect settings
b) To reduce weight of the component
c) To reduce cost of the assembly
d) To reduce amount of material used
5. Which type of tolerance provided in drilling mostly?
a. Bilateral
c. Trilateral
b. Unilateral
d. Compound
6. Which of the following option is true for given statements?

Statement 1: Bilateral tolerances are used in mass production techniques.
Statement 2: The basic size should be equal to upper and lower limits.
a. T, T
c. T, F
b. F, F
d. F, T
7. The symbol for weld type fillet is \qquad
a.

b.

c.

d.

8. The symbol for seam welding is \qquad
a)

c)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
9. The symbol for weld type double- V butt is \qquad
a)

b)

c)

d)

10. The symbol for weld type Bevel butt is \qquad
b)

a)

11. What is the term of the algebraic difference between a size, to its corresponding basic size?
a. Deviation
c. Lower deviation
b. Upper deviation
d. Actual deviation
12. What is the name of system if the size of the hole is kept constant, shaft is varied?
a. Bilateral system
c. Hole basis system
b. Unilateral system
d. Shaft basis system
13. Which is grade of tolerance?
a. Bilateral tolerance
b. Unilateral tolerance
c. Fundamental tolerance
d. Fundamental deviation
14. What is the smaller of two limits of size?
a. Actual size
c. Minimum limit of size
b. Maximum limit of size
d. Limit of size

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
15. How many number of fundamental deviation in the BIS system?
a. 25
b. 20
c. 15
d. 26
16. Which term is used to indicate maximum permissible overall variation of form or position of a feature?
a. Tolerance
c. Geometrical tolerance
b. Deviation
d. Fundamental tolerance
17. Which symbol is used to indicate datum face to represent geometrical tolerance?
a. Circle
c. Triangle
b. Square
d. Parallelogram
18. Which one of the following is belongs to form group of geometrical tolerance?
a. Angularity
c. Cylindricity
b. Parallelism
d. Concentricity
19. Which one of the following belongs to 'attitude' group in geometrical tolerance?
a. Position
c. Parallelism
b. Flatness
d. Straightness
20. What is the term used for the relationship exists between two mating parts?
a. Fit
c. Tolerance
b. Limit
d. Allowance
21. What is the algebraic difference between the actual size and its corresponding basic size?
a. Deviation
c. Actual deviation
b. Tolerance
d. Upper deviation
22. What is the tolerance if dimension is stated as $25 \pm 0.02 \mathrm{~mm}$ in a drawing?
a. +0.02 mm
b. $\mathbf{- 0 . 0 2} \mathbf{~ m m}$
c. 0.04 mm
d. 25.00 mm
23. What is the fit if the limits of hole are 25.000 to 25.021 mm and the limits of shaft are 25.022 to 25.03 mm ?
a. Clearance fit
b. Interference fit

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
c. Transition fit
d. Maximum clearance fit
24. What is the advantage of adopting geometrical tolerance symbols on production drawing?
a. It indicates surface finish level
c. It indicates method of operation
b. It makes dimensional accuracy
d. It over come usual language barrier
25. What is the name of the system, if the size of the shaft is kept constant and the size of the hole is varied to get the different class of fit?
a. Tolerance
c. Shaft basic system
b. Allowance
d. Hole basic system
26. Which type of joint is used if plate thickness is less than 5 mm ?
a. Single V butt weld
c. Square butt weld
b. Single U butt weld
d. Double U butt weld
27. Which welding symbol is shown below?

a. Lap joint
c. Double fillet weld
b. Single V butt joint
d. Single fillet weld
28. In welding symbol, if the symbol is above the baseline then the welding is to be done at
a. The arrow side
c. Right side of the arrow
b. Other side of the arrow
d. Both side of the arrow
29. For the vertical position of the weld fillet and other symbols should saw in which side
a. Right
c. Bottom
b. Left
d. Above
30. For plates of thickness more than 16 mm which weld is used
a. Square butt weld
c. Double V butt Weld
b. Single V butt weld
d. Double U butt Weld

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

6. Details to Assembly (Total Marks =16)

Position in Question Paper

Total Marks- 16
Q.4. A) 16-Marks.

Descriptive Question

1. Fig. shows details of Pedestal Bearing.

Draw : (i) Half Sectional front view of Assembly (ii) Top view of Assembly

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
2. Fig. shows details of Tool Post. Draw : (i) Half sectional front view of Assembly
(ii) Top view of Assembly

ALL DIMENSIONS IN MM

5	Screw	M.S.	1
4	Wedge	$\mathrm{C}-30$	1
3	Ring	$\mathrm{C}-30$	1
2	Block	$\mathrm{C}-30$	1
1	Post	$\mathrm{C}-30$	1
Part No.	Name	Material	No. off.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
3. Fig. shows the details of screw jack. Draw the (i) Sectional Front View
(ii) Top view
(iii) Part List and Dimensions

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
4. Fig. shows the details of Oldham's coupling. Draw the following views of the assembly
(i) Sectional Front View (ii) Left hand Side View

5. Figure No. shows the details of foot step bearing. Draw sectional F.V. and T.V. of the Assembly prepare bill of material.

3.SHAFT
M.S. 1-OFF

CM

TOLERANCE CHART

$68 \mathrm{H7}=\begin{array}{r} +0.030 \\ +0.000 \end{array}$	$68 \mathrm{~h} 6=\begin{array}{r} -0.019 \\ +0.000 \end{array}$
$50 \mathrm{HB}=\begin{array}{r} +0.039 \\ +0.000 \end{array}$	$50 \mathrm{e} 8=\begin{aligned} & -0.050 \\ & -0.009\end{aligned}$
$\begin{array}{r} +0.015 \\ 8 \mathrm{H} 7=+0.000 \end{array}$	$8 g=\begin{aligned} & -0.005 \\ & 8 g 6=-0.014 \end{aligned}$

6. Fig. Shows the details of Oldham's coupling. Draw sectional F.V. and LHSV of assembly. Prepare bill of material.

7. CENTRE BLOCK
C.l. 1 OFF

8. SHAFT
M.S.-2 OfF

9. KEY
M.S.-2 OFF

TOLERANCE CHART

$5 \mathrm{CHB}=$+0.039 +0.000	$50 \mathrm{f8}=$-0.039 -0.084
$30 \mathrm{H} 7=$+0.021 +0.000	$30 \mathrm{~g} 6=$-0.007 -0.020
$16 \mathrm{H} 7=$+0.018 +0.000	$16 \cap 6=$+0.023 +0.012

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY

MCQ Question

1. \qquad is a drawing giving details about size tolerance, heat treatment, etc.
a. Exploded drawing
c. Assembly drawing
b. Production drawing
d.Machine drawing
2. Drawing showing the position of each part with respect to each other is called \qquad
a. assembly drawing
c. machine drawing
b. part drawing
d. installation drawing
3. Exploded drawing is the drawing which gives the \qquad of each component of an assembly and they arranged in the same sequence in which they are assembled.
a. clear view
c. pictorial view
b. sectional view
d. front view
4. Detailed drawing of each part of a machine is called \qquad
a. part drawing
c. patent drawing
b. assembly drawing
d. tabular drawing
5. Which type of drawing is supplied by the manufacturer to the client?
a. Tabular drawing c. Client drawing
b. Assembly drawing
d. Installation drawing
6. Working drawing is used by \qquad
a. production department
c. marketing department
b. customer
d. designer
7. Production drawing is used by \qquad
c) marketing department
a) production department
d) designer
b) customer
8. Which of the following does not form the important part of the screw jack?
a) Frame
c) Cup
b) Nut
d) Coupling
9. The various dimensioning methods include
a) Parallel dimensioning
c) Inclined dimensioning
b) Vertical dimensioning
d) Horizontal dimensioning
10. The method in which the series of dimensions are applied from one point to other is called
a) Parallel dimension
c) Combined dimensioning
b) Chain dimensioning
d) Tabular dimensioning
11. In an assembly section, these parts should have their section lines left out or shown solid black:
a. Bolt
c. Thin parts
b. All fasteners
d.Rivet

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
12. Assembly of screw jack \qquad

a.

b.

c.

d.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
13. Assembly of None return Valve \qquad

a.

b.

c.

d.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
14. Assembly of Plummer Block \qquad

a.
b.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
15. Assembly of Pedestal Bearing \qquad

a.

16. Assembly of Tool Post \qquad

a)

Iolution:

3] ASSE MBLY OF LATHE TAIL-STOCK

c)

d)
17. Assembly of Drilling jig \qquad

a)

Polution:
b)

3] ASSE MBLY OF LATHE TAIL-STOCK

c)

d)
18. Assembly of Drilling jig \qquad

a)

Iolution:
b)

3] ASSE MBLY OF LATHE TAIL-STOCK

c)

d)
19. Assembly of Tails stock \qquad

a)

Iolution:

b)

3] ASSE MBLY OF LATHE TAIL-STOCK

c)

d)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)
20. Assembly of Oldham's Coupling \qquad

a)

lolution:

3] ASSE MBLY OF LATHE TAIL-STOCK

c)

d)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)
21. Assembly of Piston \& connecting rod \qquad

a)

b)

c)

d)

22. Assembly of Steam Stop Valve \qquad

a)

b)

c)

d)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)
23. Assembly of Drilling Jig \qquad

a)

b)

c)

d)

24. Assembly of Pipe Vice \qquad

a)

b)

c)

d)
25. Assembly of Universal Coupling \qquad

a)

b)

c)

d)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

6. Assembly to Details (Total Marks =16)

Position in Question Paper
Total Marks- 16
Q.5. a) 16-Marks.

Descriptive Question

1. Fig. shows the assembly of Non-Return Valve, Attempt any two of the

Following (1) Draw the Sectional Front View and Top View of body.
(2) Draw the Front View and Top View of Valve.
(3) Draw the Sectional Front View and Top View of Cover.

PART LIST

PART NO.	PART NAME	MATERIAL	QTY.
1	BOOY	C.I.	1
2	VALVE SEAT	G.M.	1
3	VALVE	G.M.	1
4	COVER	C.I.	1
5	STUD WTH NUT	M.S.	6

2. Fig. shows assembly of a Drill Jig. Attempt any TWO of the following :
(a) Draw sectional front view and top view of Base plate and stem.
(b) Draw sectional front view and Top view of Jig Plate and Washer.
(c) Draw Front view and side view of Stud, Nut, Bush and screw (Part No. -9).

PART LIST

P. NO	PART NAME	MAT	QTY.
1	BASE PLATE	C.I.	1
2	STEM	M.S.	1
3	JIG PLATE	C.I	1
4	SCREW	M.S.	3
5	STUD	M.S.	1
6	NUT	M.S.	1
7	EUSH (JIG)	STEEL	6
8	WASHER	M.S.	1
9	SCREW	M.S.	1

TOLERANCE CHART

$60 \mathrm{H7} 7 \pm+0.0030$	$6077=\begin{gathered}-0.030 \\ -0.049\end{gathered}$
$54 \mathrm{H7}^{2}=+0.0900$	$54 \mathrm{F7}={ }_{-0.049}^{-0.039}$
$25 \mathrm{H7}={ }_{+0.000}^{+0.021}$	$25 n 6={ }^{+0.023}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
3. Shows Assembly of Lathe tail stock

Draw detail drawing of the following parts :
(1) Body sect F.V. \& S.V.
(2) Barrel sect F.V. \& S.V.
(3) Spindle Bearing sect F.V. \& S.V.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
4. shows the assembly of Plummer block. Draw half sectional orthographic views of the following :

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

5. Shows the assembly of Oldham's coupling. Draw the sectional views of the following :
(i) Flange - F.V. \& T.V.
(ii) Central Disc - F.V. \& T.V.
(iii) Shaft - F.V. \& T.V.
(iv) Taper key

Fig. -7

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY

Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

6. Fig. shows assembly of drill jig. Draw details :
(i) Body (two views)
(ii) Component (two views)
(iii) Plate
(iv) Also show type of fit used

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

MCQ Question

1. In order to create an accurate assembly drawing the drafter should create the \qquad drawings first
A. Detail
b. title block
C. parts list
d. isometric
2. The thread note for a typical bolt will include the \qquad .
A. major diameter of the thread
b. material
C. center line
d. offset distance
3. The text used on a typical detail sheet should be \qquad .
a. placed horizontally
b. in bold text
c. in an architectural text style
d. none of the above
4. The typical parts list should include the \qquad .
a. part number
b. manufacturing material
c. number of parts needed
d. all of the above
5. A typical set of mechanical working drawings includes \qquad .
a. exploded assembly
b. part details
c. parts list
d. all of the above
6.The title block used on working drawings should include the \qquad .
a. sheet number
b. line type
c. layer set
d. all of the above
6. In the mechanical design process the first step is to \qquad .
a. brainstorm solutions
b. prepare rough sketches
c. prepare a budget
d. identify the problem
7. This type of drawing shows two lines representing the pipe diameter:
a. Single-line
b. Double-line
c. Standard piping
d. Centerline piping
8. Once a drawing is determined to be complete, the title block is used to document the change from:
a. A draft to a finished drawing
b. A finished to a working drawing
c. An assembly to a finished drawing
d. A working drawing to a draft
10.In these drawings it is necessary to show cut surfaces and distinguish between adjacent parts:
a. Assembly
c. Working drawings
b. 3D drawings
d. Skeleton assemblie
11.These drawings are given to contractors to perform work or manufacture individual parts:
a. Assembly details
c. Working drawings
b. 3D drawings
d. Skeleton assemblies
12.Deatails of of screw jack \qquad

a)

Oldham coupling

Fants ist Pertide	Heme	MaH	0
4	Racy	cil	1
2	tes	PM	1
9	err.	we	1
4	ヶヶ	Is	1
\cdots	chantor	us	,
6	sers\%	MS	1
,	lemmymar	uns:	1

b)

Maratha Vidya Prasarak Samaj＇s
Rajarshi Shahu Maharaj Polytechnic，Nashik
Udoji Maratha Boarding Campus，Near Pumping Station，Gangapur Road，Nashik－13．
RSM POLY Affiliated to MSBTE Mumbai，Approved by AICTE New Delhi，DTE Mumbai \＆Govt．of Maharashtra，Mumbai．
c）

5．5－pin

Ванフ＝ $58: 838$	ввп6 $=78: 838$
S0me－ $78: 8888$	50es－$=8: 8888$
日нフー $\ddagger 8: 838$	

d）

13．Deatails of Oldham＇s coupling \qquad
Parts list

St．No	Name	Matt．	Qty．
1	Flange	MS	2
2	Disc	MS	1
3	Shatt	MS	2
4	Key	MS	2
Oldham coupling			

∞ 雨

a）

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

c)

m. 5-9int

d)

14.Deatails of Pedestal Bearing \qquad

a)

Fertito	Henso	Mal	ar
;	Rase	cim	1
	c-..	\cdots	1
		\cdots	,
-	Sereremor	Ms	1

b)

c)

d)

15.Deatails of Plummer block \qquad

a)

No-	Name	Matt.	aty
1	Base ${ }^{\text {Bearing bra }}$	cie	!
${ }^{3}$	Bearing brass	Bromze	,
${ }_{5}^{4}$	Colit with nuts	Ms	$\frac{1}{2}$

15.Deatans of Phumer block

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

c)

d)

16. Deatails of Drilling jig \qquad

a)

b)
c)

d)

17.Deatails of Square tool post \qquad

a)

b)

c)
d)

bony of vief
LOCK NUT MNIO

18.Deatails of Tails stock \qquad

a)

b)

c)
d)

bony of vief
LOCK NUT MAIO

19. Details of Machine vice \qquad

b)

c)
d)

20. Details of Machine vice \qquad

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

C)

d)

21. Details of Stuffing Box \qquad

a)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

C)

d)

23. Details of Tool Post \qquad

a)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

C)

d)

24. Details of Non Return Valve \qquad

a)

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

C)

d)

25. Details of Universal Coupling \qquad

Prepared By: Prof.Y.M. Halde (Department of Mechanical Engineering)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)

C)

B

d)

