Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Subject: - Electrical Circuits (22324)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

(8)

Chapter No.	Name of chapter	Marks With Option
1	Single phase AC series circuit	22
2	Single phase AC parallel circuit	20
3	Three phase Circuits	20
4	Network reduction and principles of DC circuits analysis	16
5	Network Theorems	24
		102

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

BOARD THEORY
 PAPER PATTERN

Q.1		Attempt any FIVE	$5^{* 2=10}$
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC series circuit	CO-324.01
	c)	Single phase AC parallel circuit	CO-324.02
	d)	Three phase Circuits	CO-324.03
	e)	Network reduction and principles of DC circuits analysis	CO-324.04
	f)	Network Theorems	CO-324.05
	g)	Network Theorems	CO-324.05
Q.2		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network reduction and principles of DC circuits analysis	CO-324.04
Q.3		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network reduction and principles of DC circuits analysis	CO-324.04
	e)	Network Theorems	CO-324.05
Q.4		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network Theorems	CO-324.05
Q.5		Attempt any TWO 2*6=12	
		Single phase AC parallel circuit	CO-324.02
	B		

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

	b)	Network reduction and principles of DC circuits analysis	CO-324.04
	c)	Network Theorems	CO-324.05
Q.6		Attempt any TWO 2*6=12	
		Single phase AC series circuit	CO-324.01
	b)	Three phase Circuits	CO-324.03
	c)	Network Theorems	CO-324.05

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY

QUESTION PAPER

Q. 1		Attempt any FIVE $\mathbf{5 * 2}^{\mathbf{2} \mathbf{1 0}}$	
	a)	Draw impedance triangle for R-C series circuit. Write nature of power factor of this circuit.	CO-324.01
	b)	Define impedance and reactance related to single phase AC series circuit. Give the units of both.	CO-324.01
	c)	Define admittance with unit.	CO-324.02
	d)	Draw the sinusoidal waveform of 3-phase emf and also indicate the phase sequence.	CO-324.03
	e)	Give four steps to solve mesh analysis.	CO-324.04
	f)	State Superposition Theorem.	CO-324.05
	g)	State the maximum power transfer theorem for DC circuit.	CO-324.05
Q. 2		Attempt any THREE 3*4=12	
	a)	Find active, reactive and apparent power and power factor of the A.C. Series circuit consisting of $\mathrm{R}=1 \mathrm{ohm}, \mathrm{L}=0.001$ Henry and $\mathrm{C}=1$ microfarad supplied with 100 volt, 50 Hz power supply.	CO-324.01
	b)	A voltage of $200 \angle 53^{\circ}$ is applied across two impedances in parallel. The values of impedances are $(12+\mathrm{j} 16)$ and $(10-\mathrm{j} 20)$. Determine the kVA , kVAR and kW in each branch and power factor of the whole circuit.	CO-324.02
	c)	A delta connected induction motor is supplied by 3 -phase, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply the line current is 43.3 A and the total power taken from the supply is 24 kW . Find the resistance and reactance per phase of motor winding	CO-324.03
	d)	Using mesh analysis find values of VR as shown in Figure No. 1 Fig. 1.	CO-324.04
Q. 3		Attempt any THREE 3*4=12	
	a)	A coil of resistance 50Ω and inductance of 0.1 H is connected in series with 100 mF capacitor. The combination is supplied with $230 \mathrm{~V}, 50 \mathrm{~Hz}$	CO-324.01

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

		A.C. supply. Calculate voltage across each, current through the circuit, power factor and draw complete vector diagram.	
	b)	Two impedances $(12+\mathrm{j} 16)$ and ($10-\mathrm{j} 20) \Omega$ are connected in parallel across a supply of $200 \angle 60^{\circ}$ using admittance method calculate branch currents, total current and power factor of whole circuit.	CO-324.02
	c)	Give four advantages of polyphase circuits over 1-phase circuits.	CO-324.03
	d)	Give the expression for star to delta and delta to star transformation.	CO-324.04
	e)	Using Norton's theorem, find current through 1ohm resistances in Figure No. 2. Fig. 2	CO-324.05
Q. 4		Attempt any THREE 3*4=12	
	a)	An inductive coil $(10+\mathrm{j} 40) \Omega$ impedance is connected in series with a capacitor of $100 \mu \mathrm{~F}$ across $230 \mathrm{~V}, 50 \mathrm{~Hz}$, 1-Phase supply mains find : (1) Current through the circuit (2) P.F. of the circuit (3) Power dissipated in the circuit (4) Draw phasor diagram	CO-324.01
	b)	A coil having resistance of 5Ω and inductance of 0.2 H is arranged in parallel with another coil having resistance of 1Ω and inductance of 0.08 H . Calculate the current through the combination and power absorbed when a voltages of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied. Use impedance method.	CO-324.02
	c)	Each phase of a delta-connected load comprises a resistor of 50Ω and capacitor of $50 \mu \mathrm{~F}$ in series. Calculate the line and phase currents when the load is connected to a $440 \mathrm{~V}, 3$ phase 50 Hz supply.	CO-324.03
	d)	Define duality of electric circuits and write duality of electrical elements.	CO-324.05
Q. 5		Attempt any TWO 2*6=12	
	a)	A 100Ω resistor, 0.02 H inductor and $1.2 \mu \mathrm{~F}$ capacitor are connected in parallel with a circuit made up of resistor of 110Ω and a capacitor of 2.4 $\mu \mathrm{F}$. a supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across the circuit. Calculate the current taken from the supply \& phase angle of it.	CO-324.02

	b)	Using source transformation, find the voltage across $12 \Omega\left({ }_{v x}\right)$, as shown in figure Fig. 3	CO-324.04
	c)	Apply Thevenin's theorem to calculate current flowing through R5 $=250$ Ω resistor as shown in figure. 4 Fig. 4	CO-324.05
Q. 6		Attempt any TWO 2*6=12	
	a)	An a.c. series circuit has a resistance of 10Ω, an inductance of 0.2 H and a capacitance of $60 \mu \mathrm{~F}$. Calculate: (resonant frequency (current (power at resonance. Applied voltage is 200 V .	CO-324.01
	b)	State relationship between line voltage and phase voltage, line current \& phase current in a balanced star connection. Draw complete phasor diagram of voltages \& current.	CO-324.03
	c)	Apply Superposition theorem to calculate current flowing through R4 = 10Ω resistor as shown in figure. 5 Fig. 5	CO-324.05

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

CLASS TEST - I PAPER PATTERN

Syllabus:-

Unit No.	Name of the Unit	Course Outcome $(\mathbf{C O})$
1	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
2	Single phase AC parallel circuit	$\mathbf{C O - 3 2 4 . 0 2}$

Q.1	Attempt any FOUR 4*2=8Marks	Course Outcome $(\mathbf{C O})$
	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
b)	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
c)	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
d)	Single phase AC parallel circuit	$\mathbf{C O - 3 2 4 . 0 2}$
e)	Single phase AC parallel circuit	$\mathbf{C O - 3 2 4 . 0 2}$
f)	Single phase AC parallel circuit	$\mathbf{C O - 3 2 4 . 0 2}$
Q.2	Attempt any THREE 3*4=12 Marks	
	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
b)	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
c)	Single phase AC series circuit	$\mathbf{C O - 3 2 4 . 0 1}$
d)	Single phase AC parallel circuit	$\mathbf{C O - 3 2 4 . 0 2}$
e)	Single phase AC parallel circuit	

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

SAMPLE CLASS TEST - I PAPER

Q. 1	Attempt any FOUR 4*2=8Marks	Course Outcome (CO)
	Draw voltage triangles for R-L and R-C single phase AC series circuits.	CO-324.01
b)	Define quality factor of series A.C. circuit.	CO-324.01
c)	Convert $\mathrm{Z}=6+\mathrm{j} 8 \Omega$ in polar form.	CO-324.01
d)	Define admittance and conductance in relation with parallel circuits. Give formulas for the same.	CO-324.02
e)	Write properties of Parallel resonance.	CO-324.02
f)	Define Quality Factor for parallel resonance. Give equation of it.	CO-324.02
Q. 2	Attempt any THREE 3*4=12 Marks	
	A resistance 60Ω and inductance of 0.5 H is connected in series. The combination is supplied with $230 \mathrm{~V}, 50 \mathrm{~Hz}$ A.C. supply. Calculate voltage across each, current through the circuit, power factor and draw complete vector diagram.	CO-324.01
b)	A RC series circuit consisting of $\mathrm{R}=10 \Omega$ and $\mathrm{C}=100 \mathrm{mF}$ is connected across $200 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. Find the value of current and power factor. What will be the value of current and power factor if the value of resistance is doubled?	CO-324.01
c)	Derive an expression for resonant frequency of a series RLC circuit.	CO-324.01
d)	Impedances $\mathrm{Z} 1=(10+\mathrm{j} 5) \Omega$ and $\mathrm{Z} 2=(8+\mathrm{j} 6) \Omega$ are connected in parallel across $V=(200+j 0)$. Using the admittance method, calculate circuit current and the branch currents.	CO-324.02
e)	A coil having resistance of 5Ω and inductance of 0.2 H is arranged in parallel with capacitor of $5 \mathrm{~d} .0 \mu \mathrm{~F}$. Calculate the current through the combination and power absorbed when a voltages of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied. Use impedance metho	CO-324.02

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

CLASS TEST - II PAPER PATTERN

Syllabus:-

Unit No.	Name of the Unit	Course Outcome (CO)
1	Three phase Circuits	$\mathrm{CO}-324.03$
2	Network reduction and principles of DC circuits analysis	$\mathrm{CO}-324.04$
3	Network Theorems	$\mathrm{CO}-324.05$

Q. 1	Attempt any FOUR 4*2=8Marks	Course Outcome (CO)
	Three phase Circuits	CO-324.03
b)	Three phase Circuits	CO-324.03
c)	Network reduction and principles of DC circuits analysis	CO-324.04
d)	Network reduction and principles of DC circuits analysis	CO-324.04
e)	Network Theorems	CO-324.05
f)	Network Theorems	CO-324.05
Q. 2	Attempt any THREE 3*4=12 Marks	
	Three phase Circuits	CO-324.03
b)	Three phase Circuits	CO-324.03
c)	Network reduction and principles of DC circuits analysis	CO-324.04
d)	Network Theorems	CO-324.05
e)	Network Theorems	CO-324.05

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY

SAMPLE CLASS TEST - II PAPER

Q. 1	Attempt any FOUR 4*2=8Marks	Course Outcome (CO)
a)	Define line voltage and phase voltage	CO-324.03
b)	What do you mean by balanced load and balanced supply in relation with polyphase AC circuits?	CO-324.03
c)	Give four steps to solve nodal analysis.	CO-324.04
d)	How current source can be converted into equivalent voltage source?	CO-324.04
e)	State Reciprocity Theorem.	CO-324.05
f)	State Norton's theorem.	CO-324.05
Q. 2	Attempt any THREE 3*4=12 Marks	
	Three coils each with a resistance of 10Ω and inductance of 0.35 mH are connected in star to a 3-phase, $440 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the line current and total power taken per phase.	CO-324.03
b)	Derive relation between line and phase voltages of star connection of 3ph load.	CO-324.03
c)	Find current in $1 \mathrm{k} \Omega$ by using star delta transformation.	CO-324.04
d)	Find the current in 10Ω by using superposition theorem.	CO-324.05

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

COURSE OUTCOME (CO)

COURSE: - ELECTRICAL CIRCUITS (22324)
PROGRAMME: - ELECTRICAL ENGINEERING.

CO.NO	Course Outcome
$\mathbf{C O}-324.01$	Troubleshoot problems related to single phase A.C. series circuits.
$\mathbf{C O - 3 2 4 . 0 2}$	Troubleshoot problems related to single phase A.C. parallel circuits.
$\mathbf{C O - 3 2 4 . 0 3}$	Troubleshoot problems related to three phase circuits
$\mathbf{C O - 3 2 4 . 0 4}$	Use principles of circuit analysis to troubleshoot problems related to electric circuits
$\mathbf{C O - 3 2 4 . 0 5}$	Apply network theorems to troubleshoot problems related to electric circuits

SMNGLEE PMABEE AC SBㄹRTIES CuRCuITS

Position in Question Paper

Total Marks-22
Q.1. a) 2-Marks.
b) 2-Marks.
Q.2. a) 4-Marks.
Q.3. a) 4-Marks.
Q.4. a) 4-Marks.
Q.6. a) 6-Marks.

Descriptive Question

1. Define - frequency. State its relation with time period.
2. . If maximum value of a sine wave is 25 A . Calculate its average value.
3. . Draw a power triangle and state the relation between its sides.
4. State the range of phase angle and hence pf for a series RC circuit.
5. In a series RL circuit $\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=150 \mathrm{~V}$. Find equivalent voltage across the circuit.
6. An alternating current is given by $\mathrm{i}=20 \sin (314 \mathrm{t})$. Find - Current at $\mathrm{t}=0.0025$ sec at first instant. Time required to reach at 12A for first time.
7. A series circuit has a leading pf. Express it with circuit, waveform and phasor diagram.
8. In RLC series circuit $\mathrm{R}=8 \mathrm{~W}, \mathrm{~L}=0.42 \mathrm{H}$ with an unknown capacitor. If the circuit is connected across $230 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \varphi \mathrm{AC}$. Calculate value of capacitor so that circuit resonates at supply frequency. Also calculate current and pf at this instant.
9. Define peak factor and form factor. State value of each for a pure sine wave.
10. A series RLC circuit consists of $R=20 \mathrm{~W}, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=2500 \mu \mathrm{f}$. If it is connected across $230 \mathrm{~V}, 1 \varphi \mathrm{AC}$. Calculate Q factor and resonant frequency.
11. Derive the condition for resonance in an RLC series circuit. Also derive the equation for Q factor.
12. State nature of pf for any two conditions in RLC series circuit. Draw phasor diagram for each.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks*3=22*3=66)

Note: Correct answer is marked with bold.

1. Instantaneous voltage is the product of resistance and \qquad current in a resistive circuit.
a) Instantaneous
c) RMS
b) Average
d) Peak
2. Find the value of the instantaneous voltage if the resistance is 2 ohm and the instantaneous current in the circuit is 5 A .
a) 5 V
b) 2 V
c) 10 V
d) 2.5 V
3. The power for a purely resistive circuit is zero when?
a) Current is zero
c) Both current and voltage are zero
b) Voltage is zero
d) Either current or voltage is zero
4. The correct expression for the instantaneous current if instantaneous voltage is Vm(sint) in a resistive circuit is?
a) 1 A
b) 2 A
c) 3 A
d) 4 A
5. Calculate the resistance in the circuit if the rms voltage is 20 V and the rms current is 2 A .
a) 2 ohm
b) 5 ohm
c) $\mathbf{1 0} \mathbf{~ o h m}$
d) 20 ohm
6. The correct expression for the instantaneous current in a resistive circuit is?
a) $i=\operatorname{Vm}(\sin t) / R$
b) $i=V m(\operatorname{cost}) / R$
c) $i=V(\sin t) / R$
d) $i=V(\cos t) / R$
7. Can ohm's law be applied in an ac circuit?
a) Yes
c) Depends on the rms current
b) No
d) Depends on the rms voltage
8. The correct expression for the instantaneous current if instantaneous voltage is Vm(sint) in an inductive circuit is?
a) $i=\operatorname{Vm}(\sin t) / X_{L}$
b) $i=\operatorname{Vm}(\operatorname{cost}) / X_{L}$
c) $i=-\operatorname{Vm}(\sin t) / X_{L}$
d) $\mathbf{i}=-\operatorname{Vm}(\cos t) / X_{L}$
9. Inductor does not allow sudden changes in?
a) Voltage
c) Resistance
b) Current
d) Inductance
10. Inductance is \qquad to number of turns in the coil
a) directly proportional
c) equal
b) inversely proportional
d) not related
11. Choke involve use of \qquad
a) Resistor
b) Capacitor

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
$\overline{\text { RSM POLY }}$

Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

c) Inductor
d) Transistor
12. What is the value of current in an inductive circuit when there is no applied voltage?
a) Minimum
c) Zero
b) Maximum
d) Cannot be determined
13. What is the current in an inductive circuit when the applied voltage is maximum?
a) Infinity
c) Zero
b) Maximum
d) Cannot be determined
14. In an inductive circuit, the voltage \qquad the current?
a) Leads
c) Is greater than
b) Lags
d) Is less than
15. In an inductive circuit, the current \qquad the voltage?
a) Leads
c) Is greater than
b) Lags
d) Is less than
16. In which device inductor cannot be used?
a) filter circuit
c) choke
b) transformer
d) dielectric
17. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the current in the circuit.
a) 2.2 A
b) 4.2 A
c) 6.2 A
d) 8.2 A
18. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the phase difference.
a) -55.1
c) 6
b) 55.1
d) -66.1
19. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the voltage across the resistor.
a) 31.8 V
b) $\mathbf{5 7 . 4 V}$
c) 67.3 V
d) 78.2 V
20. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to a 100 V 50 Hz sinusoidal supply. Calculate the voltage across the inductor.
a) 52 V
b) 82 V
c) 65 V
d) 76 V
21. A resistance of 7 ohm is connected in series with an inductance of 31.8 mH . The circuit is connected to ax V 50 Hz sinusoidal supply. The current in the circuit is 8.2 A . Calculate the value of x.
a) 10 V
b) 50 V
c) 100 V
d) 120
22. Which, among the following, is the correct expression for φ.
a) $\varphi=\tan ^{-1}(\mathrm{XL} / \mathrm{R})$
b) $\varphi=\tan ^{-1}(\mathrm{R} / \mathrm{XL})$
c) $\varphi=\tan ^{-1}(\mathrm{XL} * \mathrm{R})$
d) $\varphi=\cos ^{-1}(\mathrm{XL} / \mathrm{R})$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
23. For an RL circuit, the phase angle is always \qquad
a) Positive
c) 0
b) Negative
d) 90
24. What is φ in terms of voltage?
a) $\varphi=\cos ^{-1} \mathrm{~V} / \mathrm{VR}$
b) $\varphi=\cos ^{-1} V^{*} \mathrm{VR}$
c) $\varphi=\cos ^{-1} \mathrm{VR} / \mathrm{V}$
d) $\varphi=\tan ^{-1} \mathrm{~V} / \mathrm{VR}$
25. What is $\sin \phi$ from impedance triangle?
a) X_{L} / R
b) X_{L} / Z
c) R / Z
d) Z / R
26. What is the resonance frequency of ac circuit?
a) $1 / \sqrt{ } \mathrm{LC}$
b) $\sqrt{ }(\mathrm{L} / \mathrm{C})$
c) $\sqrt{ } \mathrm{LC}$
d) LC
27. What is impedance at resonance?
a) maximum
c) zero
b) minimum
d) cannot be determined
28. What is the value of impedance at resonance?
a) X_{L}
b) X_{C}
c) \mathbf{R}
d) 0
29. What is φ in terms of voltage?
a) $\varphi=\cos ^{-1} \mathrm{~V} / \mathrm{V}_{\mathrm{R}}$
b) $\varphi=\cos ^{-1} V^{*} V_{R}$
c) $\varphi=\cos ^{-1} V_{R} / V$
d) $\varphi=\tan ^{-1} V / V_{R}$
30. What is $\tan \phi$ for RC circuit?
a) X_{C} / R
b) X_{L} / R
c) R / Z
d) Z / R
31. What is the resonance condition?
a) When $X_{L}>X_{C}$
c) When $X_{L}=X_{C}$
b) When $X_{L}<X_{C}$
d) When $X_{C}=$ infinity
32. What is the frequency in resonance condition?
a) Minimum
c) Cannot be determined
b) Maximum
d) Zero
33. Can capacitor fully charge using alternating current?
a) Yes
c) may or may not
b) No
d) depend on value of capacitance
34. What is the resistance offered by a capacitor?
a) Susceptance
c) Admittance
b) Conductance
d) Reactance
35. The combination of resistance and reactance known as \qquad
a) Susceptance
b) Impedance

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
d) Admittance
36. What is the relation between reactance, resistance and impedance?
a) $Z=R+J x$
b) $Z=R+X$
c) $Z=R-X$
d) $Z=R-j X$
37. What is the real part of the impedance of RLC circuit?
a) Resistance
c) Admittance
b) Conductance
d) Reactance
38. What is imaginary part of the impedance of RLC circuit?
a) Resistance
c) Admittance
b) Conductance
d) Reactance
39. Which type of current can be stored in a capacitor?
a) Alternating current
b) Both alternating current and direct current
c) Direct current
d) Neither alternating current nor direct current
40.If in an alternating current circuit, resistance is 5 ohm, capacitive reactance is 12 ohm, what is the impedance?
a) 5 ohm
b) 10 ohm
c) 12 ohm
d) $\mathbf{1 3} \mathbf{~ o h m}$
41. If in an alternating current circuit, impedance is 26 ohm , capacitive reactance is 24 ohm , what is the resistance?
a) 25 ohm
b) $\mathbf{1 0} \mathbf{~ o h m}$
c) 12 ohm
d) 23 ohm
42. If in an alternating current circuit, capacitance of $30 \mu \mathrm{~F}$ is connected to a supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the current in the circuit.
a) 1.38 A
b) 1.89 A
c) 1.74 A
d) 0.89 A
43. If in an alternating current circuit, capacitance C is connected to a supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Current in the circuit is 1.89 A . Find the capacitance C.
a) $\mathbf{3 0} \mu \mathrm{F}$
b) $20 \mu \mathrm{~F}$
c) $10 \mu \mathrm{~F}$
d) $15 \mu \mathrm{~F}$
44. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the current in the circuit.
a) 40 A
b) 10 A
c) 20 A
d) 30 A
45. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across resistance.
a) 300 V
b) 200 V

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
c) 240 V
d) 100 V
46. In ac circuit, resistance 5 ohm is connected with a capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across a capacitor.
a) 300 V
b) 200 V
c) 240 V
d) 100 V
47. Find the total voltage applied in a series $R L C$ circuit when $i=3 m A, V_{L}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=18 \mathrm{~V}$ and $\mathrm{R}=1000$ ohms.
a) 3.95 V
b) 51 V
c) 32.67 V
d) 6.67 V
48. In an RLC circuit, which of the following is always used as a vector reference?
a) Voltage
c) Impedance
b) Resistance
d) Current
49. In an RLC circuit, the power factor is always \qquad
a) Positive
c) Depends on the circuit
b) Negative
d) Zero
50. What is the correct expression for the phase angle in an RLC series circuit?
a) $\varphi=\tan ^{-1}\left(\mathbf{X}_{\mathrm{L}}-\mathbf{X}_{\mathrm{C}}\right) / \mathbf{R}$
b) $\varphi=\tan ^{-1}\left(X_{L}+X_{C}\right) / R$
c) $\varphi=\tan \left(X_{L}-X_{C}\right) / R$
d) $\varphi=\tan ^{-1}\left(X_{L}-X\right)$
51. When is $\tan \varphi$ positive?)
a) When inductive reactance is less than capacitive reactance
b) When inductive reactance is greater than capacitive reactance
c) When inductive reactance is equal to capacitive reactance
d) When inductive reactance is zero
52. When is $\tan \varphi$ negative?
a) When inductive reactance is less than capacitive reactance
b) When inductive reactance is greater than capacitive reactance
c) When inductive reactance is equal to capacitive reactance
d) When inductive reactance is zero
53. Which of the following is not ac waveform?
a) Sinusoidal
c) Square
b) Constant
d) triangular
54. What is not a frequency for ac current?
a) 50 Hz
b) 55 Hz
c) $\mathbf{0 H z}$
d) 60 Hz
55. Which type of ac waveform is given in figure?
a) Sinusoidal
c) Square
b) Triangular
d) complex waveform

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
56. The correct expression for the instantaneous current if instantaneous voltage is $\mathrm{Vm}(\operatorname{sint})$ in an inductive circuit is?
a) $i=\operatorname{Vm}(\sin t) / X_{L}$
b) $\mathrm{i}=\mathrm{Vm}(\operatorname{cost}) / \mathrm{X}_{\mathrm{L}}$
c) $i=-V m(\sin t) / X_{L}$
d) $\mathbf{i}=-\operatorname{Vm}(\operatorname{cost}) / \mathbf{X}_{\mathrm{L}}$
57. Inductor does not allow sudden changes in?
a) Voltage
c) Resistance
b) Current
d) Inductance
58. Inductance is \qquad to number of turns in the coil
a) directly proportional
c) equal
b) inversely proportional
d) not related
59. Choke involve use of \qquad
a) Resistor
c) Inductor
b) Capacitor
d) Transistor
60. What is the value of current in an inductive circuit when there is no applied voltage?
a) Minimum
c) Zero
b) Maximum
d) Cannot be determined
61. What is the current in an inductive circuit when the applied voltage is maximum?
a) Infinity
c) Zero
b) Maximum
d) Cannot be determined
62. In an inductive circuit, the voltage \qquad the current?
a) Lags
c) lead
b) Is greater than
d) Is less than
63. In an RLC circuit, the power factor is always \qquad -
a) Positive
f) Depends on the circuit
e) Negative
g) Zero
64. What is the correct expression for the phase angle in an RLC series circuit?
a) $\varphi=\tan ^{-1}\left(X_{L}+X_{C}\right) / R$
b) $\varphi=\tan \left(X_{L}-X_{C}\right) / R$
c) $\varphi=\tan ^{-1}\left(X_{L}-X\right)$
d) $\varphi=\tan ^{-1}\left(X_{L}-X_{C}\right) / \mathbf{R}$
65. When is $\tan \varphi$ positive?
a) When inductive reactance is greater than capacitive reactance
b) When inductive reactance is equal to capacitive reactance
c) When inductive reactance is zero
d) When inductive reactance is less than capacitive reactance
66. What is the resonance frequency of ac circuit?
a) $1 / \sqrt{ } \mathrm{LC}$
b) $\sqrt{ }(\mathrm{L} / \mathrm{C})$
c) $\sqrt{ } \mathrm{LC}$
d) LC

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

SUNGLE PHABSE AC PARRALLELL CIRCUUTS

Position in Question Paper

Total Marks-20
Q.1. c) 2-Marks.
Q.2. b) 4-Marks.
Q.3. b) 4-Marks.
Q.4. b) 4-Marks.
Q.5. a) 6-Marks.

Descriptive Question

1. Two admittances $\mathrm{Y}_{1}=0.012<60^{\circ}$ and $\mathrm{Y}_{2}=0.015<45^{\circ}$ are connected in parallel across $250 \mathrm{~V}, 50 \mathrm{~Hz}$ AC. Calculate power consumed by the circuit.
2. Draw an experimental set up to find current and power for parallel circuit of $R=$ 50 W and $\mathrm{L}=0.2 \mathrm{H}, \mathrm{V}=230 \mathrm{~V}, 50 \mathrm{~Hz}, 1 \varphi \mathrm{AC}$.
3. Write equation of resonant frequency and quality factor in terms of circuit components for a parallel circuit.
4. Find current I in the circuit shown in Figure No. 1 using admittance method.
5. Fig. No. 1

6. Two impedances $(5+j 6) \mathrm{W}$ and $(7-j 8) \mathrm{W}$ are connected in parallel across $230 \mathrm{~V}, 1 \mathrm{f}, 50 \mathrm{~Hz}$ a.c. supply. Determine current drawn by each path and total current in the circuit.
7. A voltage of $200 \angle 0^{\circ}$ is applied across two impedances in parallel. The values of impedance are $(12+\mathrm{j} 16)$ and $(10-\mathrm{j} 20)$. Determine the $\mathrm{kVA}, \mathrm{kVAR}$ and kW in each branch and power factor of the whole circuit.
8. If $A=10+j 8, B=-7+j 5, C=8+j 6$ Find: I. AB/C II. $(A+B) /(B-C)$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks*3=20*3=60)

1. In a parallel circuit, we consider \qquad instead of impedance.
a) Resistance
c) Inductance
b) Capacitance
d) Admittance
2. In a parallel circuit, we consider admittance instead of \qquad
a) Resistance
c) Inductance
b) Capacitance
d) Impedance
3. Which, among the following is the correct expression for impedance?
a) $\mathrm{Z}=\mathrm{Y}$
b) $\mathrm{Z}=\mathbf{1} / \mathrm{Y}$
c) $Z=Y^{2}$
d) $\mathrm{Z}=1 / \mathrm{Y}^{2}$
4. Which, among the following is the correct expression for admittance?
a) $Y=Z$
b) $\mathbf{Y}=\mathbf{1} / \mathbf{Z}$
c) $Y=Z^{2}$
d) $\mathrm{Y}=1 / \mathrm{Z}^{2}$
5. What is the unit of admittance?
a) Ohm
c) Farad
b) Henry
d) $\mathbf{o h m}{ }^{-1}$
6. As the impedance increases, the admittance \qquad
a) Increases
c) Remains the same
b) Decreases
d) Becomes zero
7. if the impedance of a system is 4 ohm , calculate its admittance.
a) $0.25 \mathrm{ohm}^{-1}$
b) $4 \mathrm{ohm}^{-1}$
c) $25 \mathrm{ohm}^{-1}$
d) $0.4 \mathrm{ohm}^{-1}$
8. In an impedance parallel network, the reactive component will either lead or lag the voltage by \qquad degrees.
a) 0
b) 90
c) 45
d) 180
9. In A parallel circuit, with any number of impedances, the voltage across each impedance is?
a) Equal
c) divided proportionally
b) divided equally
d) zero
10. In a parallel circuit, current in each impedance is
a) Equal
c) Zero
b) Different
d) infinite
11. From the given circuit, find the value of I_{R}.

a) 0
c) V / R
b) V / I
d) Cannot be determined

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
12. What is the relation between I_{R} and V in the following circuit?

a) I_{R} leads V
c) I_{R} and V are in phase
b) I_{R} lags V
d) No relation
13. What is the expression for the current in the inductor from the following circuit?

a) V / I
c) 0
b) V / X_{L}
d) Cannot be determined
14. What is the phase relation between I_{L} and V from the following circuit?

a) I_{L} lags V
c) I_{L} and V are in phase
b) I_{L} leads V
d) No relation
15. Find the expression for the current I from the given circuit.

a) $\mathrm{I}=\mathrm{I}_{\mathrm{C}}$
b) $\mathrm{I}=\mathrm{I}_{\mathrm{R}}$
c) $\mathbf{I}=\mathbf{I}_{\mathbf{C}}+\mathbf{I}_{\mathbf{R}}$
d) $\mathrm{I}=0$
16. Find the total current if $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{R}}=5 \mathrm{~A}$.

a) 3 A
b) -3 A
c) 7 A
d) 10 A

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
17. Find the value of I_{R} if $I=10 \mathrm{~A}$ and $I_{C}=8 \mathrm{~A}$.

a) 5 A
b) 18 A
c) 12 A
d) 2 A
18. Find the value of $I L$ if $I_{C}=10 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{R}}=6 \mathrm{~A}$.

a) 4 A
b) 18 A
c) 12 A
d) 2 A
19. What is the expression for the current in the capacitor from the following circuit?

a) V/C
c) 0
b) V / I
d) $\mathbf{V} / \mathbf{X}_{\mathbf{C}}$
20. What is the phase relation between I_{C} and V from the following circuit?

a) I_{C} lags V
c) I_{C} and V are in phase
b) I_{C} leads V
d) No relation
21. In an impedance parallel network, the reactive component wills \qquad the voltage by 90 degrees.
a) Lead
c) Either lead or lag
b) Lag
d) Depends on the circuit
22. In an impedance parallel network, the reactive component will either lead or lag the voltage by \qquad degrees.
a) 0
b) 90
c) 45
d) 180
23. In an impedance parallel network, the reactive component will either lead or lag the
\qquad by 90 degrees.
a) Voltage
c) Either voltage or current
b) Current
d) Cannot be determined

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
24. The reactive component in an impedance parallel circuit leads the voltage when the current \qquad the voltage.
a) Leads
c) Either leads or lags
b) Lags
d) Cannot be determined
25. The active component in an impedance parallel circuit wills \qquad the voltage.
a) Leads
c) Be in phase with
b) Lags
d) Either leads or lags
26. The phase difference between the active component of an impedance parallel circuit and the voltage in the network is \qquad
a) 0
b) 90
c) 180
d) 360
27. The quadrature component is also known as?
a) Active component
d) Neither active nor reactive component
b) Reactive component
c) Either active or reactive component
28. Find the expression for the current I from the given circuit.

a) $\mathrm{I}=\mathrm{I}_{\mathrm{L}}$
b) $\mathrm{I}=\mathrm{I}_{\mathrm{R}}$
c) $\mathbf{I}=\mathbf{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{R}}$
d) $\mathrm{I}=0$
29. Find the value of I_{R} if $I=10 \mathrm{~A}$ and $I_{L}=8 \mathrm{~A}$.

a) 5 A
b) 18 A
c) 12 A
d) $\mathbf{2 A}$
30. Find the total current if $I_{L}=2 A$ and $I_{R}=8 A$.

a) 3 A
b) -3 A
c) 7 A
d) 10 A
31. In a series RLC circuit, the phase difference between the current in the capacitor and the current in the resistor is?
a) 0^{0}
b) 90°
c) 180°
d) 360°

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
32. In a series RLC circuit, the phase difference between the current in the inductor and the current in the resistor is?
a) 0^{0}
b) 90°
c) 180°
d) 360°
33. In a series RLC circuit, the phase difference between the current in the capacitor and the current in the inductor is?
a) 0^{0}
b) 90°
c) 180°
d) 360°
34. In a series RLC circuit, the phase difference between the current in the circuit and the voltage across the resistor is?
a) 0^{0}
b) 90°
c) 180°
d) 360°
35. In a series RLC circuit, the phase difference between the current in the circuit and the voltage across the capacitor is?
a) 0^{0}
b) 90^{0}
c) 180°
d) 360°
36. \qquad the resonant frequency, the current in the inductor lags the voltage in a series RLC circuit.
a) Above
c) Equal to
b) Below
d) Depends on the circuit
37. \qquad the resonant frequency, the current in the capacitor leads the voltage in a series RLC circuit.
a) Above
c) Equal to
b) Below
d) Depends on the circuit
38. What is imaginary part of the impedance of RLC circuit?
a) Resistance
c) Admittance
b) Conductance
d) Reactance
39. Which type of current can be stored in a capacitor?
a) Alternating current
b) Both alternating current and direct current
c) Direct current
d) Neither alternating current nor direct current
40. If in an alternating current circuit, resistance is 5 ohm , capacitive reactance is 12 ohm , what is the impedance?
a) 5 ohm
b) 10 ohm
c) 12 ohm
d) $\mathbf{1 3} \mathbf{~ o h m}$
41. If in an alternating current circuit, impedance is 26 ohm, capacitive reactance is 24 ohm , what is the resistance?
a) 25 ohm
b) $\mathbf{1 0} \mathbf{~ o h m}$
c) 12 ohm
d) 23 ohm

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
42. If in an alternating current circuit, capacitance of $30 \mu \mathrm{~F}$ is connected to a supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the current in the circuit.
a) 1.38 A
b) 1.89 A
c) 1.74 A
d) 0.89 A
43. If in an alternating current circuit, capacitance C is connected to a supply of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. Current in the circuit is 1.89 A . Find the capacitance C.
a) $30 \mu \mathrm{~F}$
b) $20 \mu \mathrm{~F}$
c) $10 \mu \mathrm{~F}$
d) $15 \mu \mathrm{~F}$
44. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the current in the circuit.
a) 40 A
b) 10 A
c) 20 A
d) 30 A
45. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across resistance.
a) 300 V
b) 200 V
c) 240 V
d) 100 V
46. In ac circuit, resistance 5 ohm is connected with a capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across a capacitor.
a) 300 V
b) 200 V
c) 240 V
d) 100 V
47. Find the total voltage applied in a series $R L C$ circuit when $i=3 m A, V_{L}=30 \mathrm{~V}, V_{C}=18 \mathrm{~V}$ and $\mathrm{R}=1000$ ohms.
a) 3.95 V
b) $\mathbf{5 1 V}$
c) 32.67 V
d) 6.67 V
48. In an RLC circuit, which of the following is always used as a vector reference?
a) Voltage
c) Impedance
b) Resistance
d) Current
49. In an RLC circuit, the power factor is always \qquad
a) Positive
c) Depends on the circuit
b) Negative
d) Zero
50. What is the correct expression for the phase angle in an RLC series circuit?
a) $\boldsymbol{\varphi}=\tan ^{-1}\left(\mathbf{X}_{L}-\mathbf{X}_{\mathrm{C}}\right) / R$
b) $\varphi=\tan ^{-1}\left(X_{L}+X_{C}\right) / R$
c) $\varphi=\tan \left(X_{L}-X_{C}\right) / R$
d) $\varphi=\tan ^{-1}\left(X_{L}-X\right)$
51. When is $\tan \varphi$ positive?)
a) When inductive reactance is less than capacitive reactance
b) When inductive reactance is greater than capacitive reactance
c) When inductive reactance is equal to capacitive reactance

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
d) When inductive reactance is zero
52. When is $\tan \varphi$ negative?
a) When inductive reactance is less than capacitive reactance
b) When inductive reactance is greater than capacitive reactance
c) When inductive reactance is equal to capacitive reactance
d) When inductive reactance is zero
53. Which of the following is not ac waveform?
a) Sinusoidal
c) Square
b) Constant
d) triangular
54. What is not a frequency for ac current?
a) 50 Hz
b) 55 Hz
c) $\mathbf{0 H z}$
d) 60 Hz
55. Which type of ac waveform is given in figure?
a) Sinusoidal
c) Square
b) Triangular
d) complex waveform
56. The correct expression for the instantaneous current if instantaneous voltage is $\mathrm{Vm}(\operatorname{sint})$ in an inductive circuit is?
a) $\mathrm{i}=\mathrm{Vm}(\sin \mathrm{t}) / \mathrm{X}_{\mathrm{L}}$
b) $i=V m(\operatorname{cost}) / X_{L}$
c) $i=-\operatorname{Vm}(\sin t) / X_{L}$
d) $\mathbf{i}=-\operatorname{Vm}(\cos t) / X_{L}$
57. Inductor does not allow sudden changes in?
a) Voltage
c) Resistance
b) Current
d) Inductance
58. Inductance is \qquad to number of turns in the coil
a) directly proportional
c) equal
b) inversely proportional
d) not related
59. Choke involve use of \qquad
a) Resistor
c) Inductor
b) Capacitor
d) Transistor
60. What is the value of current in an inductive circuit when there is no applied voltage?
a) Minimum
c) Zero
b) Maximum
d) Cannot be determined

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

TMREE PHASE CIRCUITS

Position in Question Paper

Total Marks-20
Q.1. d) 2-Marks.
Q.2. c) 4-Marks.
Q.3. c) 4-Marks.
Q.4. c) 4-Marks.
Q.6. b) 6-Marks.

Descriptive Question

1. Draw phasor diagram for 3φ generated voltages.
2. List any two advantages of 3φ circuits over single phase circuits.
3. List any four observations from the phasor diagram of a 3φ delta connection.
4. Three impedances each of $\mathrm{Z}=15+\mathrm{j} 18 \mathrm{~W}$ are connected in star across a $400 \mathrm{~V}, 3 \varphi$, AC. Calculate $-\mathrm{V}_{\mathrm{ph},} \mathrm{I}_{\mathrm{ph}}, \mathrm{I}_{\mathrm{L},} \mathrm{Pf}$
5. Draw the sinusoidal waveform of 3 ph emf and also indicate the phase sequence.
6. State relationship between line voltage and phase voltage, line current and phase current in a balanced delta connection. Draw complete phasor diagram of voltages and current.
7. State any four advantages of poly phase circuit over single phase circuit.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks*3=24*3=72)

Note: Correct answer is marked with bold.

1. In a balanced three-phase system-delta load, if we assume the line voltage is $V_{R Y}=V \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{YB} is?
a) $V \angle 0^{\circ}$
b) $\mathrm{V} \angle-\mathbf{1 2 0}{ }^{0}$
c) $\mathrm{V} \angle 120^{\circ}$
d) $\mathrm{V} \angle 240^{\circ}$
2. In a balanced three-phase system-delta load, if we assume the line voltage is $V_{R Y}=V \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{BR} is?
a) $V \angle 120^{\circ}$
b) $\mathrm{V} \angle 240^{\circ}$
c) $V<-240^{\circ}$
d) $V \angle-120^{\circ}$
3. In a delta-connected load, the relation between line voltage and the phase voltage is?
a) line voltage $>$ phase voltage
c) line voltage $=$ phase voltage
b) line voltage < phase voltage
d) line voltage $>=$ phase voltage
4. If the load impedance is $Z \angle \emptyset$, the current $\left(I_{R}\right)$ is?
a) $(\mathbf{V} / \mathbf{Z})<-\boldsymbol{\varnothing}$
b) $(\mathrm{V} / \mathrm{Z}) \angle \emptyset$
c) $(\mathrm{V} / \mathrm{Z}) \angle 90-\emptyset$
d) $(\mathrm{V} / \mathrm{Z})<-90+\varnothing$
5. If the load impedance is $\mathrm{Z} \angle \emptyset$, the expression obtained for current $\left(\mathrm{I}_{\mathrm{Y}}\right)$ is?
a) $(\mathrm{V} / \mathrm{Z})<-120+\varnothing$
b) $(\mathrm{V} / \mathrm{Z}) \angle 120-\varnothing$
c) $(\mathrm{V} / \mathrm{Z}) \angle 120+\varnothing$
d) $(\mathrm{V} / \mathrm{Z})<-120-\varnothing$
6. If the load impedance is $\mathrm{Z} \angle \emptyset$, the expression obtained for current (Iis?
a) $(\mathrm{V} / \mathrm{Z})<-240+\varnothing$
b) $(\mathrm{V} / \mathrm{Z})<-240-\varnothing$
c) $(\mathrm{V} / \mathrm{Z}) \angle 240-\varnothing$
d) $(\mathrm{V} / \mathrm{Z}) \angle 240+\varnothing$
7. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3-$ \emptyset balanced supply. Determine the phase current I_{R}. Assume the phase sequence to be R_{YB}.
a) $44.74 \angle-63.4^{0} \mathrm{~A}$
b) $44.74 \angle 63.4^{\circ} \mathrm{A}$
c) $45.74 \angle-63.4^{\circ} \mathrm{A}$
d) $45.74 \angle 63.4^{\circ} \mathrm{A}$
8. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3-$ \emptyset balanced supply. Determine the phase current I_{Y}.
a) $44.74 \angle 183.4^{\circ} \mathrm{A}$
b) $45.74 \angle 183.4^{\circ} \mathrm{A}$
c) $\mathbf{4 4 . 7 4} \angle 183.4^{0} \mathrm{~A}$
d) $45.74 \angle-183.4^{\circ} \mathrm{A}$
9. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3-$ \emptyset balanced supply. Determine the phase current I_{B}.
a) $44.74 \angle 303.4^{0} \mathrm{~A}$
b) $44.74 \angle-303.4^{\circ} \mathrm{A}$
c) $45.74 \angle 303.4^{0} \mathrm{~A}$
d) $45.74 \angle-303.4^{0} \mathrm{~A}$
10. Determine the power (kW) drawn by the load.
a) 21
b) 22
c) 23
d) 24
11. The power generated by a machine increases \qquad percent from single phase to two phase.
a) 40.4
b) 41.4

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
c) 42.4
d) 43.4
12. The percentage of power increased from single phase to three phase is?
a) 50
b) 100
c) 150
d) 200
13. When the power factor is \qquad the power becomes zero 100 times a second in a 50 Hz supply.
a) 0
b) 1
c) 2
d) 3
14. Which motors are called self-starting motors?
a) single phase
c) three phase
b) two phase
d) four phase
15. In three phase system, the three voltages (currents) differ in phase by ___ electrical degrees from each other in a particular sequence.
a) 30
b) 60
c) 90
d) $\mathbf{1 2}$
16. In a two phase generator, the armature has two distinct windings that are displaced
\qquad apart.
a) 45°
b) 90°
c) 135°
d) 180°
17. In three phase system at any given instant, the algebraic sum of three voltages must be?
a) 0
b) 1
c) 2
d) 3
18. Phase sequence depends on the \qquad
a) Field
c) armature
b) rotation of the field
d) rotation of the armature
19. If $\mathrm{RR}^{`}, \mathrm{YY}^{\star}$ and $\mathrm{BB}^{`}$ constitutes three phase sequence if $\mathrm{V}_{\mathrm{RR}}=\mathrm{V}_{\mathrm{m}} \sin \omega t$ its corresponding field magnets are in clockwise direction, then $\mathrm{V}_{\mathrm{YY}}=$?
a) $V_{m} \sin \omega t$
b) $V_{m} \sin \left(\omega t+120^{\circ}\right)$
c) $V_{m} \sin \left(\omega t-\mathbf{1 2 0}^{\circ}\right)$
d) $V_{m} \sin \left(\omega t-240^{0}\right)$
20. If RR', YY^{\prime} and $\mathrm{BB}{ }^{`}$ constitutes three phase sequence if $\mathrm{V}_{\mathrm{RR}}=\mathrm{V}_{\mathrm{m}} \sin \omega t$ its corresponding field magnets are in clockwise direction, then the value of V_{BB} is?
a) $V_{m} \sin \left(\omega t-240^{\circ}\right)$
b) $\mathrm{V}_{\mathrm{m}} \sin \left(\omega \mathrm{t}-120^{\circ}\right)$
c) $V_{m} \sin \left(\omega t+240^{\circ}\right)$
d) $V_{m} \sin \omega t$
21. In a three phase alternator, there are \qquad independent phase windings or coils.
a) 1
b) 2
c) 3
d) 4
22. Each coil in three phase alternator has \qquad number of terminals.
a) 2
b) 4
c) 6
d) 8

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
23. In wye or star connection \qquad of the three phases are joined together within the alternator.
a) similar ends
c) one similar end, two opposite ends
b) opposite ends
24. The voltage between \qquad and \qquad is called phase voltage.
a) line and line
c) neutral point and reference
b) line and reference
d) line and neutral poin
25. The voltage between \qquad is called line voltage.
a) line and neutral point
c) line and line
b) line and reference
d) neutral point and reference
26. In the Delta or Mesh connection, there will be \qquad number of common terminals.
a) 1
b) 2
c) 3
d) 0
27. The relation between line voltage and phase voltage in Delta or Mesh connection is?
a) $V_{\text {phase }}>V_{\text {line }}$
b) $\mathrm{V}_{\text {phase }}<\mathrm{V}_{\text {line }}$
c) $\mathbf{V}_{\text {phase }}=\mathbf{V}_{\text {line }}$
d) $V_{\text {phase }}>=V_{\text {line }}$
28. Which of the following voltage is a phase voltage in the delta connection?
a) $V_{R N}$
b) $\mathbf{V}_{\mathbf{B R}}$
c) V_{YN}
d) $V_{B N}$
29. A balanced delta-connected load of $(2+j 3) \Omega$ per phase is connected to a balanced threephase 440 V supply. The phase current is 10 A . Find the total active power.
a) 7.26 W
b) 726 W
c) 7260 W
d) 72.6 W
30. A balanced delta-connected load of $(2+\mathrm{j} 3) \Omega$ per phase is connected to a balanced threephase 440 V supply. The phase current is 10 A . Find the apparent power.
a) $\mathbf{1 0 9 5 5 . 6 7}$ VAR
b) 10.95567 VAR
c) 109.5567 VAR
d) 1.095567 VAR
31. In star connected system, V_{RY} is equal to?
a) $V_{Y R}$
b) $-\mathbf{V}_{\mathbf{Y R}}$
c) $2 \mathrm{~V}_{\mathrm{YR}}$
d) $3 \mathrm{~V}_{\mathrm{YR}}$
32. In three phase system, the line voltage V_{RY} is equal to?
a) phasor sum of $V_{R N}$ and $V_{N Y}$
c) phasor sum of $V_{R N}$ and $V_{N Y}$
b) phasor difference of V_{RN} and V_{NY}
d) algebraic sum of V_{RN} and V_{NY}
33. The relation between the lengths of the phasors V_{RN} and $-\mathrm{V}_{\mathrm{YN}}$ is?
a) $\left|\mathrm{V}_{\mathrm{RN}}\right|>-\left|\mathrm{V}_{\mathrm{YN}}\right|$
b) $\left|\mathrm{V}_{\mathrm{RN}}\right|<-\left|\mathrm{V}_{\mathrm{YN}}\right|$
c) $\left|\mathbf{V}_{\mathbf{R N}}\right|=-\left|\mathbf{V}_{\mathrm{YN}}\right|$
d) $\left|\mathrm{V}_{\mathrm{RN}}\right|>=-\left|\mathrm{V}_{\mathrm{YN}}\right|$
34. In a star connected system, the phasors $\mathrm{V}_{\mathrm{RN}}, \mathrm{V}_{\mathrm{YN}}$ are \qquad apart.
a) 15^{0}
b) 30°
c) 45^{0}
d) 60^{0}
35. The relation between $\mathrm{V}_{\mathrm{RY}}, \mathrm{Vph}$ in a star connected system is?
a) $\mathrm{V}_{\mathrm{RY}}=\mathrm{V}_{\mathrm{ph}}$
b) $\mathbf{V}_{\mathbf{R Y}}=\sqrt{\mathbf{3}} \mathbf{V}_{\mathbf{p h}}$
c) $\mathrm{V}_{\mathrm{RY}}=3 \sqrt{ } 3 \mathrm{~V}_{\mathrm{ph}}$
d) $\mathrm{V}_{\mathrm{RY}}=3 \mathrm{~V}_{\mathrm{ph}}$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
36. In a star connected system, the relation between $\mathrm{V}_{\mathrm{YB}}, \mathrm{V}_{\mathrm{ph}}$ is?
a) $V_{Y B}=V_{p h}$
b) $\mathrm{V}_{\mathrm{YB}}=3 \sqrt{ } 3 \mathrm{~V}_{\mathrm{ph}}$
c) $\mathrm{V}_{\mathrm{YB}}=3 \mathrm{~V}_{\mathrm{ph}}$
d) $\mathbf{V}_{\mathrm{YB}}=\sqrt{ } \mathbf{3} \mathrm{V}_{\text {ph }}$
37. The voltages, $\mathrm{V}_{\mathrm{BR}}, \mathrm{V}_{\mathrm{ph}}$ are related in star connected system is?
a) $\mathrm{V}_{\mathrm{BR}}=3 \mathrm{~V}_{\mathrm{ph}}$
b) $\mathrm{V}_{\mathrm{BR}}=3 \sqrt{ } 3 \mathrm{~V}_{\mathrm{ph}}$
c) $\mathbf{V}_{\mathrm{BR}}=\sqrt{ } \mathbf{3} \mathbf{V}_{\mathrm{ph}}$
d) $V_{B R}=V_{p h}$
38. In a delta connected system, the voltage across the terminals R and Y is $400 \angle 0^{\circ}$.

Calculate the line voltage V_{RY}. Assume R_{RY} phase sequence.
a) $400 \angle 0^{\circ}$
b) $400 \angle 120^{\circ}$
c) $400<-120^{\circ}$
d) $400 \angle 240^{\circ}$
39. In a delta connected system, the voltage across the terminals R and Y is $400 \angle 0^{\circ}$. Find the line voltage V_{YB}.
a) $400 \angle 120^{\circ}$
b) $\mathbf{4 0 0}<-\mathbf{1 2 0}{ }^{\circ}$
c) $400 \angle 240^{\circ}$
d) $400<-240^{\circ}$
40. In a delta connected system, the voltage across the terminals R and Y is $400 \angle 0^{\circ}$. Find the line voltage V_{BR}.
a) $400 \angle 240^{\circ}$
b) $400 \angle 120^{\circ}$
c) $\mathbf{4 0 0}<-\mathbf{2 4 0} 0^{\circ}$
d) $400<-120^{\circ}$
41. In delta-connected system, the currents $\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Y}}, \mathrm{I}_{\mathrm{B}}$ are equal in magnitude and they are displaced by \qquad from one another.
a) 0^{0}
b) 60°
c) 90°
d) $\mathbf{1 2 0}{ }^{\circ}$
42. In a delta-connected system, the currents $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{Y}}=$?
a) \mathbf{I}_{Ph}
b) $2 \mathrm{I}_{\mathrm{Ph}}$
c) $3 \mathrm{I}_{\mathrm{Ph}}$
d) $4 \mathrm{I}_{\mathrm{Ph}}$
43. The relation between I_{L} and I_{Ph} is in a delta connected system is?
a) $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{Ph}}$
b) $\mathbf{I}_{\mathbf{L}}=\sqrt{\mathbf{3}} \mathbf{I}_{\mathbf{P h}}$
c) $\mathrm{I}_{\mathrm{L}}=3 \mathrm{I}_{\mathrm{Ph}}$
d) $\mathrm{I}_{\mathrm{L}}=3 \sqrt{3} \mathrm{I}_{\mathrm{Ph}}$
44. The line currents are \qquad behind respective phase currents in a delta connected system.
a) 120°
b) 90°
c) 60°
d) 30°
45. In a delta connected system, the expression of power (P) is?
a) $V_{L} \mathrm{I}_{\mathrm{L}} \cos \varphi \mathrm{W}$
b) $\sqrt{\mathbf{3}} \mathbf{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \varphi \mathbf{W}$
c) $3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \varphi \mathrm{W}$
d) $3 \sqrt{ } 3 \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \varphi \mathrm{W}$
46. In a balanced three-phase system-delta load, if we assume the line voltage is $\mathrm{V}_{\mathrm{RY}}=$ $\mathrm{V} \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{YB} is?
a) $\mathrm{V} \angle 0^{\circ}$
b) $\mathrm{V}<-\mathbf{1 2 0}{ }^{0}$
c) $\mathrm{V} \angle 120^{\circ}$
d) $\mathrm{V} \angle 240^{\circ}$
47. In a balanced three-phase system-delta load, if we assume the line voltage is $\mathrm{V}_{\mathrm{RY}}=$ $\mathrm{V} \angle 0^{\circ}$ as a reference phasor. Then the source voltage V_{BR} is?
a) $\mathrm{V} \angle 120^{\circ}$
b) $\mathrm{V} \angle 240^{\circ}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
c) $\mathrm{V} \angle-240^{\circ}$
d) $V \angle-120^{\circ}$
48. In a delta-connected load, the relation between line voltage and the phase voltage is?
a) line voltage $>$ phase voltage
c) line voltage $=$ phase voltage
b) line voltage < phase voltage
d) line voltage $>=$ phase voltage
49. If the load impedance is $Z \angle \emptyset$, the current $\left(I_{R}\right)$ is?
a) $(\mathrm{V} / \mathrm{Z})<-\varnothing$
b) $(\mathrm{V} / \mathrm{Z}) \angle \emptyset$
c) $(\mathrm{V} / \mathrm{Z}) \angle 90-\varnothing$
d) $(\mathrm{V} / \mathrm{Z}) \angle-90+\varnothing$
50. If the load impedance is $\mathrm{Z} \angle \emptyset$, the expression obtained for current $\left(\mathrm{I}_{\mathrm{Y}}\right)$ is?
a) $(\mathrm{V} / \mathrm{Z}) \angle-120+\varnothing$
b) $(\mathrm{V} / \mathrm{Z}) \angle 120-\varnothing$
c) $(\mathrm{V} / \mathrm{Z}) \angle 120+\varnothing$
d) $(V / Z) \angle-\mathbf{1 2 0 - \varnothing}$
51. If the load impedance is $\mathrm{Z} \angle \emptyset$, the expression obtained for current (Iis?
a) $(\mathrm{V} / \mathrm{Z}) \angle-240+\varnothing$
b) $(V / Z)<-240-\emptyset$
c) $(\mathrm{V} / \mathrm{Z}) \angle 240-\varnothing$
d) $(\mathrm{V} / \mathrm{Z}) \angle 240+\varnothing$
52. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3$ - \emptyset balanced supply. Determine the phase current I_{R}. Assume the phase sequence to be $R_{Y B}$.
a) $\mathbf{4 4 . 7 4} \angle-63.4^{\circ} \mathrm{A}$
b) $44.74 \angle 63.4^{\circ} \mathrm{A}$
c) $45.74 \angle-63.4^{0} \mathrm{~A}$
d) $45.74 \angle 63.4^{\circ} \mathrm{A}$
53. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3$ $-\emptyset$ balanced supply. Determine the phase current I_{Y}.
a) $44.74 \angle 183.4^{\circ} \mathrm{A}$
b) $45.74 \angle 183.4^{\circ} \mathrm{A}$
c) $\mathbf{4 4 . 7 4} \angle 183.4^{\mathbf{0}} \mathrm{A}$
d) $45.74 \angle-183.4^{0} \mathrm{~A}$
54. A three-phase balanced delta connected load of $(4+\mathrm{j} 8) \Omega$ is connected across a $400 \mathrm{~V}, 3$ $-\emptyset$ balanced supply. Determine the phase current I_{B}.
a) $44.74 \angle 303.4^{\circ} \mathrm{A}$
b) $\mathbf{4 4 . 7 4 \angle - 3 0 3 . 4}{ }^{0} \mathrm{~A}$
c) $45.74 \angle 303.4^{0} \mathrm{~A}$
d) $45.74 \angle-303.4^{0} \mathrm{~A}$
55. Determine the power (kW) drawn by the load.
a) 21
b) 22
c) 23
d) 24
56. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400 W and -35 W . Calculate the total active power.
a) 360
b) 365
c) 370
d) 375
57. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400 W and -35 W . Find the power factor.
a) 0.43
b) 0.53
c) 0.63
d) 0.73
58. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400 W and -35 W . Find the reactive power.
a) 751.44
b) 752.44
c) 753.44
d) 754.44
59. The input power to a three-phase load is 10 kW at 0.8 Pf . Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
a) $\mathbf{7 . 1 6 5}$
b) 6.165
c) 6.165
d) 4.165
60. The input power to a three-phase load is 10 kW at 0.8 Pf . Two watt meters are connected to measure the power. Find the reading of lower reading wattmeter.
a) 1.835
b) $\mathbf{2 . 8 3 5}$
c) 3.835
d) 4.835

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

NETWORK ERDUCTION AND PRINCIPLES OF CIRCUIT ANALYSIS

Descriptive Question

1. Three resistor each of 23 W are connected in delta across a $230 \mathrm{~V}, 3 \varphi, 50 \mathrm{~Hz}$ AC. Calculate the power consumed by the load.
2. State only the formula for star to delta transformation.
3. Find the value of V of Figure if the voltage at node A is 12 V .

4. Derive the formulae for star to delta, and star to delta transformation.
5. Using mesh analysis finds value of R1 and R2 shown in Figure

6. Find current through 8 W resistance using nodal analysis in Figure

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks* $3=16 * 3=48$)

Note: Correct answer is marked with bold.

1. Mesh analysis is applicable for non planar networks also.
a) True
b) false
2. A mesh is a loop which contains \qquad number of loops within it.
a) 1
c) 3
b) 2
d) no loop
3. Consider the circuit shown below. The number mesh equations that can be formed are?

a) 1
b) 2
c) 3
d) 4
4. In the figure shown below, the current through loop 1 be I_{1} and through the loop 2 be I_{2}, then the current flowing through the resistor R_{2} will be?

a) I_{1}
b) I_{2}
c) $\mathbf{I}_{1}-\mathrm{I}_{\mathbf{2}}$
d) $\mathrm{I}_{1}+\mathrm{I}_{2}$
5. If there are 5 branches and 4 nodes in graph, then the number of mesh equations that can be formed are?
a) 2
b) 4
c) 6
d) 8
6. Consider the circuit shown in the figure. Find voltage V_{x}.

a) 1
b) 1.25
c) 1.5
d) 1.75

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
7. Consider the circuit shown below. Find the current I_{1}.

a) 3.3
b) 4.3
c) 5.3
d) 6.3
8. Consider the following figure. Find the current I_{2} (.

a) 1.7
b) 2.6
c) 3.6
d) 4.6
9. Consider the following figure. Find the current I_{3} (.

a) 4
b) 4.7
c) 5
d) 5.7
10. Find current through R_{2} resistor.

a) 3
b) 3.25
c) 3.5
d) 3.75
11. If there are 8 nodes in network, we can get \qquad number of equations in the nodal analysis.
a) 9
b) 8
c) 7
d) 6
12. Nodal analysis can be applied for non planar networks also.
a) True
b) False
13. In nodal analysis how many nodes are taken as reference nodes?
a) 1
b) 2
c) 3
d) 4
14. Find the voltage at node P in the following figure.

a) 8 V
b) 9 V
c) 10 V
d) 11 V
15. Find the resistor value $R_{1}(\Omega)$ in the figure shown below.

a) 10
b) 11
c) 12
d) 13
16. Find the value of the resistor $R_{2}(\Omega)$ in the circuit shown below.

a) 5
b) 6
c) 7
d) 8
17. Find the voltage (V) at node 1 in the circuit shown.

a) 5.32
b) $\mathbf{6 . 3 2}$
c) 7.32
d) 8.32
18. Find the voltage (V) at node 2 in the circuit shown below.

a) 2.7
b) 3.7
c) 4.7
d) 5.7
19. Find the voltage at node 1 of the circuit shown below.

a) 32.7
b) 33.7
c) 34.7
d) 35.7
20. Find the voltage at node 2 of the circuit shown below.

a) 13
b) 14
c) 15
d) 16
21. By using source transformation voltage source in series resistor is replaced by
a) Voltage source in series with a resistor
b) Current source in parallel with a resistor
c) Voltage source in parallel with a resistor
d) Current source in series with a resistor

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai
22. Source Transformation is \qquad
a) Unilateral
c) Bilateral
b) Unique
d) Complicated
23. If there are two resistors in parallel and in series with a voltage source then
a) Parallel resistor has no effect
b) Series resistor has no effect
c) Both has their respective effects
d) Both has no effect on the voltage source
24. Using source transformation, calculate the voltage.

a) 4.33 V
b) $\mathbf{3 9 V}$
c) 0.230 V
d) 36 V
25. Which element(s) has no effect in the given circuit?

a) 7Ω
c) Both 7Ω and 10Ω
b) 10Ω
d) Voltage source.
26. The value of current source is \qquad after replacing the given network with a single current source and a resistor.

a) 70 V
b) 60 V
c) 90 V
d) 80 V
27. If there is a 12 A current source in series with 2Ω and in parallel with a 4Ω resistor, then voltage $\mathrm{V}=$?

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
a) 24 V
b) $\mathbf{4 8 V}$
c) 3 V
d) 6 V
28. Find the current flowing through 4Ω resistor shown in network below.

a) 1.33 A
b) 2.35 A
c) 1.66 A
d) 2.66 A
29. Calculate the power delivered by the 50 V source.

a) 274 W
b) 276 W
c) 285 W
d) 291 W
30. Source transformation can be used for dependent sources.
a) True
b) False
31. Using source transformation, calculate vm.

a) $2 v$
b) $\mathbf{- 2 v}$
c) 1 v
d) -1 v
32. Find the voltage value Vm in the circuit given below.

a) $\mathbf{- 3 V}$
b) 3 V
c) 2.1 V
d) -2.1 V
33. Source transformation technique is mainly based on \qquad law.
a) Newton's
c) Ohm's
b) Kirchhoff's
d) Einstein's

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
34. In source transformation,
a) Voltage sources remain same
b) Current sources remain same
c) Both voltage and current sources undergo change
d) Resistances/Impedances remain same
35. If there are five 20 V voltage sources in parallel, then in source transformation
a) All are considered
c) All are ignored
b) Only one is considered
d) Only 2 are considered
36. Find the equivalent delta circuit.

a) $9.69 \mathrm{ohm}, 35.71 \mathrm{ohm}, 6.59 \mathrm{ohm}$
b) $10.69 \mathrm{ohm}, 35.71 \mathrm{ohm}, 6.59 \mathrm{ohm}$
c) $9.69 \mathrm{ohm}, 34.71 \mathrm{ohm}, 6.59 \mathrm{ohm}$
d) $10.69 \mathrm{ohm}, 35.71 \mathrm{ohm}, 7.59 \mathrm{ohm}$
37. Which, among the following is the correct expression for star-delta conversion?
a) $\mathrm{R} 1=\mathrm{Ra} * \mathrm{Rb} /(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc}), \mathrm{R} 2=\mathrm{Rb} * \mathrm{Rc} /(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc}), \mathrm{R} 3=\mathrm{Rc} * \mathrm{Ra} /(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc})$
b) $\mathrm{R} 1=\mathrm{Ra} /(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc}), \mathrm{R} 2=\mathrm{Rb} /(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc}), \mathrm{Rc}=/(\mathrm{Ra}+\mathrm{Rb}+\mathrm{Rc})$
c) $\mathbf{R 1} 1=\mathbf{R a}+\mathbf{R b}+\mathbf{R a} * \mathbf{R b} / \mathbf{R c}, \mathbf{R 2}=\mathbf{R c}+\mathbf{R b}+\mathbf{R c} * \mathbf{R b} / \mathbf{R a}, \mathbf{R} 3=\mathbf{R a}+\mathbf{R c}+\mathbf{R a} * \mathbf{R c} / \mathbf{R b}$
d) $\mathrm{R} 1=\mathrm{Ra} * \mathrm{Rb} / \mathrm{Rc}, \mathrm{R} 2=\mathrm{Rc} * \mathrm{Rb} / \mathrm{Ra}, \mathrm{R} 3=\mathrm{Ra} * \mathrm{Rc} / \mathrm{Rb}$
38. Find the equivalent resistance between X and Y.

a) 3.33 ohm
b) 4.34 ohm
c) 5.65 ohm
d) 2.38 ohm
39. Delta connection is also known as
a) Y-connection
b) Mesh connection
c) Either Y-connection or mesh connection
d) Neither Y-connection nor mesh connection
40. $R a$ is resistance at $A, R b$ is resistance at $B, R c$ is resistance at C in star connection. After transforming to delta, what is resistance between B and C ?

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
a) $\mathrm{Rc}+\mathrm{Rb}+\mathrm{Rc}^{*} \mathbf{R b} / \mathbf{R a}$
b) $\mathrm{Rc}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rb} / \mathrm{Rc}$
c) $\mathrm{Ra}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rc} / \mathrm{Rb}$
d) $\mathrm{Rc}+\mathrm{Rb}+\mathrm{Rc} * \mathrm{Ra} / \mathrm{Rb}$
41. $R a$ is resistance at $A, R b$ is resistance at $B, R c$ is resistance at C in star connection. After transforming to delta, what is resistance between A and C ?
a) $\mathrm{Ra}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rb} / \mathrm{Rc}$
b) $\mathbf{R a}+\mathbf{R c}+\mathbf{R a} * \mathbf{R c} / \mathbf{R b}$
c) $\mathrm{Ra}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rc} / \mathrm{Ra}$
d) $\mathrm{Ra}+\mathrm{Rc}+\mathrm{Ra} * \mathrm{Rb} / \mathrm{Rc}$
42. $R a$ is resistance at $A, R b$ is resistance at $B, R c$ is resistance at C in star connection. After transforming to delta, what is resistance between A and B ?
a) $\mathrm{Rc}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rb} / \mathrm{Rc}$
b) $\mathrm{Ra}+\mathrm{Rb}+\mathrm{Ra} * \mathrm{Rc} / \mathrm{Rb}$
c) $\mathbf{R a}+\mathbf{R b}+\mathbf{R a} * \mathbf{R b} / \mathbf{R c}$
d) $\mathrm{Ra}+\mathrm{Rc}+\mathrm{Ra}^{*} \mathrm{Rc} / \mathrm{Rb}$
43. If a 1 ohm 2 ohm and $32 / 3 \mathrm{ohm}$ resistor is connected in star, find the equivalent delta connection.
a) $34 \mathrm{ohm}, 18.67 \mathrm{ohm}, 3.19 \mathrm{ohm}$
b) $33 \mathrm{ohm}, 18.67 \mathrm{ohm}, 3.19 \mathrm{ohm}$
c) $33 \mathrm{ohm}, 19.67 \mathrm{ohm}, 3.19 \mathrm{ohm}$
d) $34 \mathrm{ohm}, 19.67 \mathrm{ohm}, 3.19 \mathrm{ohm}$
44. If an $8 / 9 \mathrm{ohm}, 4 / 3 \mathrm{ohm}$ and $2 / 3 \mathrm{ohm}$ resistor is connected in star, find its delta equivalent.
a) $\mathbf{4 o h m}, \mathbf{3 o h m}, \mathbf{2 o h m}$
b) $1 \mathrm{ohm}, 3 \mathrm{ohm}, 2 \mathrm{ohm}$
c) $4 \mathrm{ohm}, 1 \mathrm{ohm}, 2 \mathrm{ohm}$
d) $4 \mathrm{ohm}, 3 \mathrm{ohm}, 1 \mathrm{ohm}$
45. Find the equivalent resistance between A and B.

a) 32 ohm
b) 31 ohm
c) 30 ohm
d) 29 ohm
46. Source transformation technique is mainly based on \qquad law.
a) Newton's
c) Ohm's
b) Kirchhoff's
d) Einstein's
47. In source transformation,
a) Voltage sources remain same
b) Current sources remain same
c) Both voltage and current sources undergo change
d) Resistances/Impedances remain same
48. If there are two resistors in parallel and in series with a voltage source then
a) Parallel resistor has no effect
b) Series resistor has no effect
c) Both has their respective effects
d) Both has no effect on the voltage source

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

NETWORK THEOREMS

Position in Question Paper

Total Marks-24
Q.1.f) 2-Marks.
g) 2-Marks.
Q.3. e) 4-Marks.
Q.4. d) 4-Marks.
Q.5. c) 6-Marks.
Q.6. c) 6-Marks.

Descriptive Question

1. State 'Norton's' theorem with advantages, disadvantages, limitation, application and stepwise procedure to apply it.
2. State maximum power transfer theorem for AC circuits with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
3. State superposition theorem for AC and DC circuits with advantages, disadvantages, limitation, application and stepwise procedure to apply it.
4. State Thevenin's theorem with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
5. State Reciprocity theorem with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
6. Find R_{TH} from following figure

7. Find the value of maximum power transferred to $R_{L}=6 \mathrm{~W}$ from the source of figure

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
8. Using Thevenin's theorem find current through 5 W resistance. figure

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks*3=24*3=72)

Note: Correct answer is marked with bold.

1. The Norton current is the \qquad
a) Short circuit current
b) Open circuit current
c) Open circuit and short circuit current
d) Neither open circuit nor short circuit current
2. Norton resistance is found by?
a) Shorting all voltage sources
b) Opening all current sources
c) Shorting all voltage sources and opening all current sources
d) Opening all voltage sources and shorting all current sources
3. Norton's theorem is true for \qquad
a) Linear networks
b) Non-Linear networks
c) Both linear networks and nonlinear networks
d) Neither linear networks nor non-linear networks
4. In Norton's theorem Isc is \qquad
a) Sum of two current sources
c) Infinite current sources
b) A single current source
d) 0
5. Isc is found across the \qquad terminals of the network.
a) Input
c) Neither input nor output
b) Output
d) Either input or output
6. Can we use Norton's theorem on a circuit containing a BJT?
a) Yes
c) Depends on the BJT
b) No
d) Insufficient data provided
7. Calculate the Norton resistance for the following circuit if 5 ohm is the load resistance.

a) 10 ohm
b) 11 ohm
c) $\mathbf{1 2} \mathbf{~ o h m}$
d) 13 ohm

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
8. Calculate the short circuit current is the 5 ohm resistor is the load resistance.

a) 0.72 A
b) 0.32 A
c) 0.83 A
d) 0.67 A
9. Find the current in the 5 ohm resistance using Norton's theorem.

a) 1 A
b) 1.5 A
c) 0.25 A
d) 0.5 A
10. Which of the following is also known as the dual of Norton's theorem?
a) Thevenin's theorem
c) Maximum power transfer theorem
b) Superposition theorem
d) Millman's theorem
11. In superposition theorem, when we consider the effect of one voltage source, all the other voltage sources are \qquad
a) Shorted
c) Removed
b) Opened
d) Undisturbed
12. In superposition theorem, when we consider the effect of one current source, all the other voltage sources are \qquad
a) Shorted
c) Removed
b) Opened
d) Undisturbed
13. In superposition theorem, when we consider the effect of one voltage source, all the other current sources are \qquad
a) Shorted
c) Removed
b) Opened
d) Undisturbed
14. In superposition theorem, when we consider the effect of one current source, all the other current sources are \qquad
a) Shorted
c) Removed
b) Opened
d) Undisturbed

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

15 . Find the value of Vx due to the 16 V source.

a) 4.2 V
b) 3.2 V
c) 2.3 V
d) 6.3 V
16. Find Vx due to the 3 A source.

a) 56 V
b) 78 V
c) 38 V
d) $\mathbf{4 8 V}$
17. Find the value of Vx due to the 10 V source.

a) 1 V
b) $\mathbf{2 V}$
c) 3 V
d) 4 V
18. Find the voltage due to the 15A source.

a) 0 V
b) 2 V
c) 4 V
d) 6 V
19. Superposition theorem is valid for \qquad
a) Linear systems
b) Non-linear systems
c) Both linear and non-linear systems
d) Neither linear nor non-linear systems
20. Superposition theorem does not work for \qquad
a) Current
b) Voltage
c) Power
d) Works for all: current, voltage and power
21. Calculate the Thevenin resistance across the terminal AB for the following circuit.

a) 4.34 ohm
b) 3.67 ohm
c) 3.43 ohm
d) 2.32 ohm
22. Calculate $\mathrm{V}_{\text {th }}$ for the given circuit.

a) 5.54 V
b) 3.33 V
c) 6.67 V
d) 3.67 V
23. Calculate the current across the 4 ohm resistor.

a) 0.86 A
b) 1.23 A
c) 2.22 A
d) 0.67 A
24. The Thevenin voltage is the \qquad
a) Open circuit voltage
b) Short circuit voltage
c) Open circuit and short circuit voltage
d) Neither open circuit nor short circuit voltage
25. Thevenin resistance is found by \qquad
a) Shorting all voltage sources
b) Opening all current sources
c) Shorting all voltage sources and opening all current sources
d) Opening all voltage sources and shorting all current sources
26. Thevenin's theorem is true for \qquad
a) Linear networks
b) Non-Linear networks
c) Both linear networks and nonlinear networks
d) Neither linear networks nor non-linear networks
27. In Thevenin's theorem Vth is \qquad
a) Sum of two voltage sources
c) Infinite voltage sources
b) A single voltage source
d) 0
28. Vth is found across the \qquad terminals of the network.
a) Input
c) Neither input nor output
b) Output
d) Either input or output
29. Which of the following is also known as the dual of Thevenin's theorem?
a) Norton's theorem
c) Maximum power transfer theorem
b) Superposition theorem
d) Millman's theorem
30. Can we use Thevenin's theorem on a circuit containing a BJT?
a) Yes
c) Depends on the BJT
b) No
d) Insufficient data provided
31. The maximum power drawn from source depends on \qquad
a) Value of source resistance
c) Both source and load resistance
b) Value of load resistance
d) Neither source or load resistance
32. The maximum power is delivered to a circuit when source resistance is \qquad load resistance.
a) Greater than
c) Less than
b) Equal to
d) Greater than or equal to
33. If source impedance is a complex number Z , then load impedance is equal to \qquad
a) \mathbb{Z}^{\prime}
b) $-Z$
c) $-Z$,
d) Z
34. If $\mathrm{ZL}=\mathrm{Zs}$ ', then $\mathrm{RL}=$?
a) -RL
b) $\mathbf{R s}$
c) -Rs
d) 0
35. Calculate the value of RL across A and B.

a) 3.45 ohm
b) 2.91 ohm
c) 6.34 ohm
d) 1.54 ohm

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
36. Calculate Eth.

a) 3.43 V
b) 4.57 V
c) 3.23 V
d) 5.34 V
37. Calculate the maximum power transferred.

a) 1.79 W
b) 4.55 W
c) 5.67 W
d) 3.78 W
38. Does maximum power transfer imply maximum efficiency?
a) Yes
c) Sometimes
b) No
d) Cannot be determined
39. Under the condition of maximum power efficiency is?
a) 100%
b) 0%
c) 30%
d) $\mathbf{5 0 \%}$
40. Name some devices where maximum power has to be transferred to the load rather than maximum efficiency.
a) Amplifiers
b) Communication circuits
c) Both amplifiers and communication circuits
d) Neither amplifiers nor communication
41. To check for the Reciprocity Theorem we consider \qquad of response to excitation.
a) Ratio
c) Product
b) Addition
d) subtraction
42. For the Reciprocity Theorem to satisfy the ratio of response to excitation before and after the source is replaced should be?
a) different
b) Same
c) before source is replaced is greater than after the source is replaced
d) before source is replaced is less than after the source is replaced 43. The circuit which satisfies Reciprocity Theorem is called?
a) Short circuit
c) Linear circuit
b) Open circuit
d) Non-linear circuit

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

44 . Find the current through the 2Ω (c-resistor in the circuit shown below.

a) 0.143
b) $\mathbf{1 . 4 3}$
c) 14.3
d) 143
45. In the following circuit, the current drawn by 2Ω resistor (a-after the source is replaced is?

a) 143
b) 14.3
c) $\mathbf{1 . 4 3}$
d) 0.143
46. The following circuit satisfies Reciprocity Theorem.

a) True
b) False
47. Find the current through 3Ω resistor in the circuit shown below.

a) 1
b) 2
c) 3
d) 4
48. Find the current through 2Ω resistor after source is replaced in the below circuit.

a) 4
b) 3
c) 2
d) 1
49. The following circuit satisfies the reciprocity theorem.

a) False
b) True
50. While considering Reciprocity theorem, we consider ratio of response to excitation as ratio of?
a) voltage to voltage
c) voltage to current
b) current to current
d) none of the mentioned
51. Consider the figure shown below. Find the voltage (V) at node 1.

a) 13
b) 14
c) 15
d) 16
52. Consider the figure shown below. Find the voltage (V) at node 2.

a) 3
b) 4
c) 5
d) 6
53. Consider the figure shown below. Find the voltage (V) at node 3.

a) 4.5
b) 5.5
c) 6.5
d) 7.5

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
54. Consider the figure shown below. Find the power (W) delivered by the source 6A.

a) $\mathbf{2 0 . 3}$
b) 1.3
c) 22.3
d) 24.3
55. Find the voltage (V) at node 1 in the circuit shown below.

a) 18
b) 19
c) 20
d) 21
56. Consider the figure shown below. Find the voltage (V) at node 2.

a) $\mathbf{1 1 . 5}$
b) 12
c) 12.5
d) 13
57. Find the voltage (V) at node 3 in the figure shown below.

a) 18
b) 20
c) 22
d) 24

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

58 . Find the power absorbed by 5Ω resistor in the following figure.

a) 60
b) $\mathbf{6 5 . 5}$
c) 70.6
d) 75
59. Find the value of the voltage (V) in the equivalent voltage source of the current source shown below.

a) 20
b) 25
c) 30
d) 35
60. Find the value of the current (in the equivalent current source of the voltage source shown below.

a) 1
b) 2
c) 3
d) 4
61. Find current through R_{2} resistor.

a) 3
b) 3.25
c) 3.5
d) 3.75

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
62. If there are 8 nodes in network, we can get \qquad number of equations in the nodal analysis.
a) 9
b) 8
c) 7
d) 6
63. Nodal analysis can be applied for non planar networks also.
a) True
c) False
64. In nodal analysis how many nodes are taken as reference nodes?
a) 1
b) 2
c) 3
d) 4
65. Find the voltage at node P in the following figure.

a) 8 V
b) 9 V
c) 10 V
d) 11 V
66. Find the resistor value $R_{1}(\Omega)$ in the figure shown below.

a) 10
b) 11
c) 12
d) 13
67. Find the value of the resistor $R_{2}(\Omega)$ in the circuit shown below.

a) 5
b) 6
c) 7
d) 8

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY
68. Find the voltage (V) at node 1 in the circuit shown.

a) 5.32
b) $\mathbf{6 . 3 2}$
c) 7.32
d) 8.32
69. Find the voltage (V) at node 2 in the circuit shown below.

a) 2.7
b) 3.7
c) 4.7
d) 5.7
70. Find the voltage at node 1 of the circuit shown below.

a) 32.7
b) 33.7
c) 34.7
d) 35.7
71. Find the voltage at node 2 of the circuit shown below.

a) 13
b) 14
c) 15
d) 16
72. In nodal analysis how many nodes are taken as reference nodes?
a) 1
b) 2
c) 3
d) 4

