

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

Subject: - Electrical Circuits (22324)

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SYLLABUS

Chapter No.	Name of chapter	Marks With Option
1	Single phase AC series circuit	22
2	Single phase AC parallel circuit	20
3	Three phase Circuits	20
4	Network reduction and principles of DC circuits analysis	16
5	Network Theorems	24
	Total Marks :-	102

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

BOARD THEORY PAPER PATTERN

Q.1		Attempt any FIVE5*2=10	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC series circuit	CO-324.01
	c)	Single phase AC parallel circuit	CO-324.02
	d)	Three phase Circuits	CO-324.03
	e)	Network reduction and principles of DC circuits analysis	CO-324.04
	f)	Network Theorems	CO-324.05
	g)	Network Theorems	CO-324.05
Q.2		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network reduction and principles of DC circuits analysis	CO-324.04
Q.3		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network reduction and principles of DC circuits analysis	CO-324.04
	e)	Network Theorems	CO-324.05
Q.4		Attempt any THREE 3*4=12	
		Single phase AC series circuit	CO-324.01
	b)	Single phase AC parallel circuit	CO-324.02
	c)	Three phase Circuits	CO-324.03
	d)	Network Theorems	CO-324.05
Q.5		Attempt any TWO 2*6=12	
		Single phase AC parallel circuit	CO-324.02

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b)	Network reduction and principles of DC circuits analysis	CO-324.04
	c)	Network Theorems	CO-324.05
Q.6		Attempt any TWO 2*6=12	
		Single phase AC series circuit	CO-324.01
	b)	Three phase Circuits	CO-324.03
	c)	Network Theorems	CO-324.05

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SAMPLE

QUESTION PAPER

Q.1		Attempt any FIVE5*2=10	
	a)	Draw impedance triangle for R-C series circuit. Write nature of power factor of this circuit.	CO-324.01
	b)	Define impedance and reactance related to single phase AC series circuit. Give the units of both.	CO-324.01
	c)	Define admittance with unit.	CO-324.02
	d)	Draw the sinusoidal waveform of 3-phase emf and also indicate the phase sequence.	CO-324.03
	e)	Give four steps to solve mesh analysis.	CO-324.04
	f)	State Superposition Theorem.	CO-324.05
	g)	State the maximum power transfer theorem for DC circuit.	CO-324.05
Q.2		Attempt any THREE 3*4=12	
	a)	Find active, reactive and apparent power and power factor of the A.C. Series circuit consisting of R=1 ohm, L=0.001 Henry and C= 1 microfarad supplied with 100 volt, 50 Hz power supply.	CO-324.01
	b)	A voltage of $200 \ge 53^{\circ}$ is applied across two impedances in parallel. The values of impedances are $(12 + j16)$ and $(10 - j20)$. Determine the kVA, kVAR and kW in each branch and power factor of the whole circuit.	CO-324.02
	c)	A delta connected induction motor is supplied by 3-phase, 400V, 50Hz supply the line current is 43.3A and the total power taken from the supply is 24 kW. Find the resistance and reactance per phase of motor winding	CO-324.03
	d)	Using mesh analysis find values of VR as shown in Figure No. 1 $2.0k\Omega + 4.7k\Omega$ $8V + 3.3k\Omega \ge V_R + 5V$ Fig. 1.	CO-324.04
Q.3		Attempt any THREE 3*4=12	
	a)	A coil of resistance 50 Ω and inductance of 0.1 H is connected in series with 100 mF capacitor. The combination is supplied with 230 V, 50 Hz	CO-324.01

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

		A.C. supply. Calculate voltage across each, current through the circuit,	
		power factor and draw complete vector diagram.	
	b)	Two impedances $(12 + j16)$ and $(10-j20) \Omega$ are connected in parallel across a supply of $200 \angle 60^0$ using admittance method calculate branch currents, total current and power factor of whole circuit.	CO-324.02
	c)	Give four advantages of polyphase circuits over 1-phase circuits.	CO-324.03
	d)	Give the expression for star to delta and delta to star transformation.	CO-324.04
	e)	Using Norton's theorem, find current through 10hm resistances in Figure No. 2. $R_1 \xrightarrow{R_3} \xrightarrow{R_3} \xrightarrow{R_4\Omega} 1\Omega$ $B_1 \xrightarrow{=} 28 V$ $R_2 \ge 2 \Omega$ Fig.2	CO-324.05
Q.4		Attempt any THREE 3*4=12	
	a)	 An inductive coil (10 + j40) Ω impedance is connected in series with a capacitor of 100 µF across 230 V, 50 Hz, 1-Phase supply mains find : (1) Current through the circuit (2) P.F. of the circuit (3) Power dissipated in the circuit (4) Draw phasor diagram 	CO-324.01
	b)	A coil having resistance of 5 Ω and inductance of 0.2H is arranged in parallel with another coil having resistance of 1 Ω and inductance of 0.08 H. Calculate the current through the combination and power absorbed when a voltages of 100 V, 50 Hz is applied. Use impedance method.	CO-324.02
	c)	Each phase of a delta-connected load comprises a resistor of 50 Ω and capacitor of 50 μ F in series. Calculate the line and phase currents when the load is connected to a 440 V, 3 phase 50 Hz supply.	CO-324.03
	d)	Define duality of electric circuits and write duality of electrical elements.	CO-324.05
Q.5		Attempt any TWO 2*6=12	
	a)	A 100 Ω resistor, 0.02 H inductor and 1.2 μ F capacitor are connected in parallel with a circuit made up of resistor of 110 Ω and a capacitor of 2.4 μ F. a supply of 230V, 50 Hz is connected across the circuit. Calculate the current taken from the supply & phase angle of it.	CO-324.02

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

	b)	Using source transformation, find the voltage across 12 Ω (<i>_{vx}</i>), as shown in figure Fig.3 $ \begin{array}{c} 10 \Omega \\ 50 v \\ \pm \\ 50 v \\ \pm \\ 40 \Omega \\ \end{array} $	CO-324.04
	c)	Apply Thevenin's theorem to calculate current flowing through $R5 = 250$ Ω resistor as shown in figure.4 $24 v \stackrel{+}{=}$ $24 v \stackrel{+}{=}$ R_1 R_2 R_3 R_4 R_5	CO-324.05
Q.6		Attempt any TWO 2*6=12	
	a)	An a.c. series circuit has a resistance of 10 Ω , an inductance of 0.2 H and a capacitance of 60 μ F. Calculate: (resonant frequency (current (power at resonance. Applied voltage is 200 V.	CO-324.01
	b)	State relationship between line voltage and phase voltage, line current & phase current in a balanced star connection. Draw complete phasor diagram of voltages & current.	CO-324.03
	c)	Apply Superposition theorem to calculate current flowing through R4 = 10 Ω resistor as shown in figure.5 $\int_{R_1^R} \int_{S_2^R} \int_{S_1^R} \int_{S_2^R} \int_{S_1^R} \int_{S_1$	CO-324.05

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

CLASS TEST - I PAPER PATTERN

Syllabus:-

Unit No.	Name of the Unit	Course Outcome (CO)
1	Single phase AC series circuit	CO-324.01
2	Single phase AC parallel circuit	CO-324.02

		Course
Q.1	Attempt any FOUR 4*2=8Marks	Outcome
		(CO)
	Single phase AC series circuit	CO-324.01
b)	Single phase AC series circuit	CO-324.01
c)	Single phase AC series circuit	CO-324.01
d)	Single phase AC parallel circuit	CO-324.02
e)	Single phase AC parallel circuit	CO-324.02
f)	Single phase AC parallel circuit	CO-324.02
Q.2	Attempt any THREE 3*4=12 Marks	
	Single phase AC series circuit	CO-324.01
b)	Single phase AC series circuit	CO-324.01
c)	Single phase AC series circuit	CO-324.01
d)	Single phase AC parallel circuit	CO-324.02
e)	Single phase AC parallel circuit	CO-324.02

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SAMPLE CLASS TEST - I PAPER

		Course
Q.1	Attempt any FOUR 4*2=8Marks	Outcome
		(CO)
	Draw voltage triangles for R-L and R-C single phase AC series circuits.	CO-324.01
b)	Define quality factor of series A.C. circuit.	CO-324.01
c)	Convert $Z = 6 + j8 \Omega$ in polar form.	CO-324.01
d)	Define admittance and conductance in relation with parallel circuits. Give formulas for the same.	CO-324.02
e)	Write properties of Parallel resonance.	CO-324.02
f)	Define Quality Factor for parallel resonance. Give equation of it.	CO-324.02
Q.2	Attempt any THREE 3*4=12 Marks	
	A resistance 60 Ω and inductance of 0.5 H is connected in series. The combination is supplied with 230 V, 50 Hz A.C. supply. Calculate voltage across each, current through the circuit, power factor and draw complete vector diagram.	CO-324.01
b)	A RC series circuit consisting of $R = 10 \Omega$ and $C = 100 \text{ mF}$ is connected across 200V, 50Hz AC supply. Find the value of current and power factor. What will be the value of current and power factor if the value of resistance is doubled?	CO-324.01
c)	Derive an expression for resonant frequency of a series RLC circuit.	CO-324.01
d)	Impedances $Z1 = (10 + j5) \Omega$ and $Z2 = (8 + j6) \Omega$ are connected in parallel across $V = (200 + j0)$. Using the admittance method, calculate circuit current and the branch currents.	CO-324.02
e)	A coil having resistance of 5 Ω and inductance of 0.2H is arranged in parallel with capacitor of 5d.0 μ F. Calculate the current through the combination and power absorbed when a voltages of 100 V, 50 Hz is applied. Use impedance metho	CO-324.02

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

CLASS TEST - II PAPER PATTERN

Syllabus:-

Unit No.	Name of the Unit	Course Outcome (CO)
1	Three phase Circuits	CO-324.03
2	Network reduction and principles of DC circuits analysis	CO-324.04
3	Network Theorems	CO-324.05

		Course
Q.1	Attempt any FOUR 4*2=8Marks	Outcome
		(CO)
	Three phase Circuits	CO-324.03
b)	Three phase Circuits	CO-324.03
c)	Network reduction and principles of DC circuits analysis	CO-324.04
d)	Network reduction and principles of DC circuits analysis	CO-324.04
e)	Network Theorems	CO-324.05
f)	Network Theorems	CO-324.05
Q.2	Attempt any THREE 3*4=12 Marks	
	Three phase Circuits	CO-324.03
b)	Three phase Circuits	CO-324.03
c)	Network reduction and principles of DC circuits analysis	CO-324.04
d)	Network Theorems	CO-324.05
e)	Network Theorems	CO-324.05

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SAMPLE CLASS TEST - II PAPER

		Course Outcome
Q.1	Attempt any FOUR 4*2=8Marks	(CO)
a)	Define line voltage and phase voltage	CO-324.03
b)	What do you mean by balanced load and balanced supply in relation with polyphase AC circuits?	CO-324.03
c)	Give four steps to solve nodal analysis.	CO-324.04
d)	How current source can be converted into equivalent voltage source?	CO-324.04
e)	State Reciprocity Theorem.	CO-324.05
f)	State Norton's theorem.	CO-324.05
Q.2	Attempt any THREE 3*4=12 Marks	
	Three coils each with a resistance of 10 Ω and inductance of 0.35mH are connected in star to a 3-phase, 440 V, 50 Hz supply. Calculate the line current and total power taken per phase.	CO-324.03
b)	Derive relation between line and phase voltages of star connection of 3ph load.	CO-324.03
c)	Find current in 1k Ω by using star delta transformation.	CO-324.04
d)	Find the current in 10 Ω by using superposition theorem.	CO-324.05

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

COURSE OUTCOME (CO)

COURSE: - ELECTRICAL CIRCUITS (22324)

PROGRAMME: - ELECTRICAL ENGINEERING.

CO.NO	Course Outcome
CO-324.01	Troubleshoot problems related to single phase A.C. series circuits.
CO-324.02	Troubleshoot problems related to single phase A.C. parallel circuits.
CO-324.03	Troubleshoot problems related to three phase circuits
CO-324.04	Use principles of circuit analysis to troubleshoot problems related to electric circuits
CO-324.05	Apply network theorems to troubleshoot problems related to electric circuits

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SINGLE PHASE AC SERIES CIRCUITS

Position in Question Paper

- Q.1. a) 2-Marks.
 - b) 2-Marks.
- Q.2. a) 4-Marks.
- **Q.3.** a) **4-Marks.**
- **Q.4.** a) **4-Marks.**
- **Q.6.** a) 6-Marks.

Descriptive Question

- 1. Define frequency. State its relation with time period.
- 2. If maximum value of a sine wave is 25A. Calculate its average value.
- 3. Draw a power triangle and state the relation between its sides.
- 4. State the range of phase angle and hence pf for a series RC circuit.
- 5. In a series RL circuit $V_R = 100V$ and $V_L = 150V$. Find equivalent voltage across the circuit.
- 6. An alternating current is given by $i = 20 \sin (314t)$. Find –Current at t = 0.0025 sec at first instant. Time required to reach at 12A for first time.
- **7.** A series circuit has a leading pf. Express it with circuit, waveform and phasor diagram.
- 8. In RLC series circuit R = 8W, L = 0.42 H with an unknown capacitor. If the circuit is connected across 230V, 50 Hz, 1 ϕ AC. Calculate value of capacitor so that circuit resonates at supply frequency. Also calculate current and pf at this instant.
- 9. Define peak factor and form factor. State value of each for a pure sine wave.
- **10.** A series RLC circuit consists of R = 20W, L = 1H and $C = 2500 \ \mu f$. If it is connected across 230V, 1ϕ AC. Calculate Q factor and resonant frequency.
- **11.** Derive the condition for resonance in an RLC series circuit. Also derive the equation for Q factor.
- **12.** State nature of pf for any two conditions in RLC series circuit. Draw phasor diagram for each.

Total Marks-22

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

MCQ Question

(Total number of Question=Marks*3=22*3=66)

Note: Correct answer is marked with **bold**.

1. Instantaneous voltage is the product of resistance and ______ current in a resistive circuit. a) Instantaneous c) RMS **b**) Average d) Peak

2. Find the value of the instantaneous voltage if the resistance is 2 ohm and the instantaneous current in the circuit is 5A.

- a) 5V c) 10V
- b) 2V d) 2.5V
- 3. The power for a purely resistive circuit is zero when?
 - a) Current is zero c) Both current and voltage are zero
 - b) Voltage is zero d) Either current or voltage is zero

4. The correct expression for the instantaneous current if instantaneous voltage is Vm(sint) in a resistive circuit is?

- a) 1A c) 3A
- d) 4A **b) 2A**

5. Calculate the resistance in the circuit if the rms voltage is 20V and the rms current is 2A.

- a) 2 ohm
- b) 5 ohm

d) 20 ohm

c) 10 ohm

d) i=V(cost)/R

- 6. The correct expression for the instantaneous current in a resistive circuit is? c) i=V(sint)/R
 - a) i=Vm(sint)/R
 - b) i=Vm(cost)/R
- 7. Can ohm's law be applied in an ac circuit?
 - a) Yes b) No

- c) Depends on the rms current
- d) Depends on the rms voltage

8. The correct expression for the instantaneous current if instantaneous voltage is Vm(sint) in an inductive circuit is?

- a) $i = Vm(sint)/X_L$
- b) $i = Vm(cost)/X_{L}$
- 9. Inductor does not allow sudden changes in?
 - a) Voltage
 - **b)** Current
- 10. Inductance is
 - a) directly proportional
 - b) inversely proportional
- 11. Choke involve use of _____
 - a) Resistor

- c) $i = -Vm(sint)/X_L$
- d) $\mathbf{i} = -\mathbf{Vm}(\mathbf{cost})/\mathbf{X}_{\mathbf{L}}$
- c) Resistance
- d) Inductance
- to number of turns in the coil
 - c) equal
 - d) not related
 - b) Capacitor

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

b) Maximum d) Cannot be determined 13. What is the current in an inductive circuit when the applied voltage is maximum? c) Zero a) Infinity b) Maximum d) Cannot be determined 14. In an inductive circuit, the voltage the current? c) Is greater than a) Leads b) Lags d) Is less than 15. In an inductive circuit, the current the voltage? a) Leads c) Is greater than b) Lags d) Is less than 16. In which device inductor cannot be used? a) filter circuit c) choke b) transformer d) dielectric 17. A resistance of 7 ohm is connected in series with an inductance of 31.8mH. The circuit is connected to a 100V 50Hz sinusoidal supply. Calculate the current in the circuit. a) 2.2A c) 6.2A b) 4.2A d) 8.2A is connected to a 100V 50Hz sinusoidal supply. Calculate the phase difference. a) -55.1 c) 6 b) 55.1 d) -66.1 a) 31.8V c) 67.3V b) **57.4V** d) 78.2V 20. A resistance of 7 ohm is connected in series with an inductance of 31.8mH. The circuit is connected to a 100V 50Hz sinusoidal supply. Calculate the voltage across the inductor. a) 52V c) 65V **b) 82V** d) 76V a) 10V c) 100V b) 50V d) 120 22. Which, among the following, is the correct expression for φ . a) $\phi = \tan^{-1} (XL/R)$ c) $\phi = \tan^{-1} (XL^*R)$

b) $\phi = \tan^{-1} (R/XL)$ d) $\phi = \cos^{-1} (XL/R)$

Prepared By: Prof.P.A.Shinde(Electrical Engineering)

18. A resistance of 7 ohm is connected in series with an inductance of 31.8mH. The circuit

19. A resistance of 7 ohm is connected in series with an inductance of 31.8mH. The circuit is connected to a 100V 50Hz sinusoidal supply. Calculate the voltage across the resistor.

21. A resistance of 7 ohm is connected in series with an inductance of 31.8mH. The circuit is connected to a x V 50Hz sinusoidal supply. The current in the circuit is 8.2A. Calculate the value of x.

c) Inductor

a) Minimum

- d) Transistor
- 12. What is the value of current in an inductive circuit when there is no applied voltage?
 - c) Zero

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

23. For an RL circuit, the phase angle is always	
a) Positive	c) 0
b) Negative	d) 90
24. What is φ in terms of voltage?	
a) $\varphi = \cos^{-1} V / V R$	c) $\varphi = \cos^{-1} V R / V$
b) $\phi = \cos^{-1} V^* V R$	d) $\phi = \tan^{-1} V / V R$
25. What is $sin\phi$ from impedance triangle?	
a) X _L /R	c) R/Z
b) X_L/Z	d) Z/R
26. What is the resonance frequency of ac circuit?	
a) $1/\sqrt{LC}$	c) \sqrt{LC}
b) $\sqrt{(L/C)}$	d) LC
27. What is impedance at resonance?	
a) maximum	c) zero
b) minimum	d) cannot be determined
28. What is the value of impedance at resonance?	
a) X _L	c) R
b) X _C	d) 0
29. What is φ in terms of voltage?	
a) $\varphi = \cos^{-1} V / V_R$	c) $\varphi = \cos^{-1}V_R/V$
b) $\varphi = \cos^{-1} V^* V_R$	d) $\varphi = \tan^{-1} V / V_R$
30. What is tan for RC circuit?	
a) X_C/R	c) R/Z
b) X _L /R	d) Z/R
31. What is the resonance condition?	
a) When $X_L > X_C$	c) When $X_L = X_C$
b) When $X_L < X_C$	d) When X_C =infinity
32. What is the frequency in resonance condition?	
a) Minimum	c) Cannot be determined
b) Maximum	d) Zero
33. Can capacitor fully charge using alternating cur	rent?
a) Yes	c) may or may not
b) No	d) depend on value of capacitance
34. What is the resistance offered by a capacitor?	
a) Susceptance	c) Admittance
b) Conductance	d) Reactance
35. The combination of resistance and reactance kn	own as
a) Susceptance	b) Impedance

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- c) Conductance
- 36. What is the relation between reactance, resistance and impedance?
 - a) Z=R+Jx

c) Z=R-X d) Z=R-jX

- b) Z=R+X
- 37. What is the real part of the impedance of RLC circuit?
 - a) **Resistance**
 - b) Conductance d) Reactance

38. What is imaginary part of the impedance of RLC circuit?

a) Resistance

c) Admittance

c) Admittance

b) Conductance

39. Which type of current can be stored in a capacitor?

- a) Alternating current
- b) Both alternating current and direct current
- c) Direct current
- d) Neither alternating current nor direct current

40.If in an alternating current circuit, resistance is 5 ohm, capacitive reactance is 12 ohm, what is the impedance?

- a) 5 ohm c) 12 ohm
- b) 10 ohm d) 13 ohm

41. If in an alternating current circuit, impedance is 26 ohm, capacitive reactance is 24 ohm, what is the resistance?

- a) 25 ohm c) 12 ohm
- b) **10 ohm**

42. If in an alternating current circuit, capacitance of 30 µF is connected to a supply of 200V,50Hz. Find the current in the circuit.

a) 1.38 A c) 1.74 A b) 1.89 A d) 0.89 A

43. If in an alternating current circuit, capacitance C is connected to a supply of 200V,50Hz. Current in the circuit is 1.89 A. Find the capacitance C.

- a) **30 µF**
- b) 20 μF

44. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the current in the circuit.

- a) 40 A
- d) 30 A b) 10 A

45. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance

12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across resistance. a) 300 V b) 200 V

d) Admittance

d) Reactance

d) 23 ohm

c) 10 µF

d) 15 µF

c) 20 A

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

d) 100 V

c) 240 V

d) 100 V

c) 32.67V

d) 6.67V

c) Impedance

d) Current

d) Zero

c) 240 V

46. In ac circuit, resistance 5 ohm is connected with a capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across a capacitor.

- a) 300 V
- b) 200 V

47. Find the total voltage applied in a series RLC circuit when i=3mA, V_L =30V, V_C =18V and R=1000 ohms.

- a) 3.95V
- **b) 51V**

48. In an RLC circuit, which of the following is always used as a vector reference?

- a) Voltage
- b) Resistance

49. In an RLC circuit, the power factor is always _____

- a) Positive
- b) Negative

50. What is the correct expression for the phase angle in an RLC series circuit?

- a) $\phi = \tan^{-1}(X_L X_C)/R$
- b) $\phi = \tan^{-1} (X_{L} + X_{C})/R$

51. When is $tan\phi$ positive?)

a) When inductive reactance is less than capacitive reactance

- b) When inductive reactance is greater than capacitive reactance
- c) When inductive reactance is equal to capacitive reactance
- d) When inductive reactance is zero
- 52. When is tanφ negative?

a) When inductive reactance is less than capacitive reactance

- b) When inductive reactance is greater than capacitive reactance
- c) When inductive reactance is equal to capacitive reactance
- d) When inductive reactance is zero
- 53. Which of the following is not ac waveform?
 - a) Sinusoidal
 - b) **Constant**
- 54. What is not a frequency for ac current?
 - a) 50 Hz
 - b) 55 Hz

55. Which type of ac waveform is given in figure?

- a) Sinusoidal
- b) Triangular

- c) Square
- d) triangular
- c) OHz
- d) 60 Hz
- c) Square
- d) complex waveform

- - c) $\phi = \tan(X_L X_C)/R$

c) Depends on the circuit

- d) $\phi = \tan^{-1} (X_{L} X)$

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

56. The correct expression for the instantan	eous current if instantaneous voltage is Vm(sint)	
in an inductive circuit is?		
a) $i = Vm(sint)/X_L$	c) $i = -Vm(sint)/X_L$	
b) $i = Vm(cost)/X_L$	d) $\mathbf{i} = -\mathbf{Vm}(\mathbf{cost})/\mathbf{X}_{\mathbf{L}}$	
57. Inductor does not allow sudden changes	s in?	
a) Voltage	c) Resistance	
b) Current	d) Inductance	
3. Inductance is to number of turns in the coil		
a) directly proportional	c) equal	
b) inversely proportional	d) not related	
59. Choke involve use of		
a) Resistor	c) Inductor	
b) Capacitor	d) Transistor	
60. What is the value of current in an induc	ctive circuit when there is no applied voltage?	
a) Minimum	c) Zero	
b) Maximum	d) Cannot be determined	
61. What is the current in an inductive circle \mathbf{V}	uit when the applied voltage is maximum?	
a) Infinity	c) Zero	
b) Maximum	d) Cannot be determined	
62. In an inductive circuit, the voltage	the current?	
a) Lags	c) lead	
b) is greater than	a) is less than	
63. In an RLC circuit, the power factor is a	Iways	
a) Positive	f) Depends on the circuit	
e) Negative	g) Zero	
64. What is the correct expression for the p	hase angle in an RLC series circuit?	
a) $\varphi = \tan^{-1} (X_L + X_C)/R$	c) $\phi = \tan^{-1} (X_L - X)$	
b) $\varphi = tan(X_L - X_C)/R$	d) $\varphi = \tan^{-1}(X_L - X_C)/R$	
65. When is tanφ positive?		
a) When inductive reactance is great	er than capacitive reactance	
b) When inductive reactance is equal to	capacitive reactance	
c) When inductive reactance is zero	*	
d) When inductive reactance is less that	n capacitive reactance	
66. What is the resonance frequency of ac	circuit?	

- a) $1/\sqrt{LC}$ c) \sqrt{LC}
- b) $\sqrt{(L/C)}$ d) LC

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

SINGLE PHASE

Position in Question Paper

Total Marks-20

- Q.1. c) 2-Marks.
- Q.2. b) 4-Marks.
- Q.3. b) 4-Marks.
- Q.4. b) 4-Marks. O_{5} a) 6 Marks
- Q.5. a) 6-Marks.

Descriptive Question

- 1. Two admittances $Y_1 = 0.012 < 60^\circ$ and $Y_2 = 0.015 < 45^\circ$ are connected in parallel across 250V, 50Hz AC. Calculate power consumed by the circuit.
- 2. Draw an experimental set up to find current and power for parallel circuit of R = 50W and L = 0.2H, V = 230V, 50Hz, 1 ϕ AC.
- **3.** Write equation of resonant frequency and quality factor in terms of circuit components for a parallel circuit.
- 4. Find current I in the circuit shown in Figure No. 1 using admittance method.

- 5. <u>Fig. No. 1</u>
- 6. Two impedances (5 + j6) W and (7 j8) W are connected in parallel across 230 V, 1f, 50 Hz a.c. supply. Determine current drawn by each path and total current in the circuit.
- 7. A voltage of 200 ∠ 0° is applied across two impedances in parallel. The values of impedance are (12 + j16) and (10 j20). Determine the kVA, kVAR and kW in each branch and power factor of the whole circuit.
- 8. If A = 10 + j8, B = -7 + j5, C = 8 + j6 Find: I. AB/C II. (A+B)/(B-C)

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

MCQ Question

(Total number of Question=Marks*3=20*3=60)

	• •••)
1. In a parallel circuit, we consider	_ instead of impedance.
a) Resistance	c) Inductance
b) Capacitance	d) Admittance
2. In a parallel circuit, we consider admittance inst	ead of
a) Resistance	c) Inductance
b) Capacitance	d) Impedance
3. Which, among the following is the correct expre	ssion for impedance?
a) Z=Y	c) $Z=Y^2$
b) Z=1/Y	d) $Z=1/Y^2$
4. Which, among the following is the correct expre	ssion for admittance?
a) Y=Z	c) $Y=Z^2$
b) Y=1/Z	d) $Y=1/Z^{2}$
5. What is the unit of admittance?	
a) Ohm	c) Farad
b) Henry	d) ohm ⁻¹
6. As the impedance increases, the admittance	
a) Increases	c) Remains the same
b) Decreases	d) Becomes zero
7. if the impedance of a system is 4 ohm, calculate	its admittance.
a) 0.25 ohm ⁻¹	c) 25 ohm^{-1}
b) 4 ohm^{-1}	d) 0.4 ohm^{-1}
8. In an impedance parallel network, the reactive co	omponent will either lead or lag the
voltage by degrees.	
a) 0	c) 45
b) 90	d) 180
9. In A parallel circuit, with any number of impeda	nces, the voltage across each impedance
is?	
a) Equal	c) divided proportionally
b) divided equally	d) zero
10. In a parallel circuit, current in each impedance	is
a) Equal	c) Zero
b) Different	d) infinite
11. From the given circuit, find the value of I_R .	
IR IC	
v v c	
- R 2 T	
ſ	
a) 0	c) V/R
b) V/I	d) Cannot be determined

Prepared By: Prof.P.A.Shinde(Electrical Engineering)

Page 22 of 58

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

12. What is the relation between I_R and V in the following circuit?

- a) I_R leads V
- b) I_R lags V

- c) I_R and V are in phase
- d) No relation

13. What is the expression for the current in the inductor from the following circuit?

a) V/I

c) 0d) Cannot be determined

b) V/X_L d) Cannot be determin 14. What is the phase relation between I_L and V from the following circuit?

a) I_L lags V

b) I_L leads V

c) I_L and V are in phase

d) No relation

15. Find the expression for the current I from the given circuit.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

17. Find the value of I_R if I=10A and I_C =8A.

a) 5A

b) 18A

18. Find the value of IL if $I_C=10A$ and $I_R=6A$.

a) 4A b) 18A

c)	12A
d)	2A

c) 12A

d) 2A

19. What is the expression for the current in the capacitor from the following circuit?

a) V/Cb) V/I

c) 0
d) V/X_C

20. What is the phase relation between I_C and V from the following circuit?

+ V -		
	}	

a) I_C lags V

b) I_C leads V

c) I_C and V are in phased) No relation

21. In an impedance parallel network, the reactive component wills ______ the voltage by 90 degrees.

a) Lead

b) Lag

c) Either lead or lagd) Depends on the circuit

22. In an impedance parallel network, the reactive component will either lead or lag the voltage by ______ degrees.

a) 0

b) 90

c) 45d) 180

23. In an impedance parallel network, the reactive component will either lead or lag the _____ by 90 degrees.

a) Voltage

b) Current

- c) Either voltage or current
- d) Cannot be determined

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

24. The reactive component in an impedance parallel circuit leads the voltage when the current ______ the voltage.

a) Leads

- c) Either leads or lags
- d) Cannot be determined b) Lags 25. The active component in an impedance parallel circuit wills ______ the voltage.
 - a) Leads
 - b) Lags

c) Be in phase with d) Either leads or lags

26. The phase difference between the active component of an impedance parallel circuit and the voltage in the network is _____

- a) 0
- b) 90

c) 180

- d) 360
- 27. The quadrature component is also known as?
 - a) Active component
 - b) Reactive component
 - c) Either active or reactive component
- 28. Find the expression for the current I from the given circuit.

29. Find the value of I_R if I=10A and I_L =8A.

c) 7A a) 3A b) -3A d) 10A 31. In a series RLC circuit, the phase difference between the current in the capacitor and the

current in the resistor is?	
a) 0^0	c) 180 ⁰
b) 90°	d) 360°

Prepared By: Prof.P.A.Shinde(Electrical Engineering)

Page 25 of 58

c) $I=I_{I}+I_{R}$

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

32. In a series RLC circuit, the phase difference between the current in the inductor and the current in the resistor is?

a) 0^{0} b) 90° c) 180° d) 360°

c) 180°

d) 360°

c) 180°

d) 360°

33. In a series RLC circuit, the phase difference between the current in the capacitor and the current in the inductor is?

a) **0**⁰

b) 90°

34. In a series RLC circuit, the phase difference between the current in the circuit and the voltage across the resistor is?

- a) 0^{0}
- b) 90°

35. In a series RLC circuit, the phase difference between the current in the circuit and the voltage across the capacitor is?

a) 0^{0} c) 180° b) 90⁰ d) 360°

36. _____ the resonant frequency, the current in the inductor lags the voltage in a series RLC circuit.

- a) Above
- b) Below

37. _____ the resonant frequency, the current in the capacitor leads the voltage in a series RLC circuit.

- a) Above
- **b)** Below
- d) Depends on the circuit
- 38. What is imaginary part of the impedance of RLC circuit?
 - a) Resistance
 - b) Conductance

39. Which type of current can be stored in a capacitor?

a) Alternating current

b) Both alternating current and direct current

c) Direct current

d) Neither alternating current nor direct current

40. If in an alternating current circuit, resistance is 5 ohm, capacitive reactance is 12 ohm, what is the impedance?

a) 5 ohm b) 10 ohm

c) 12 ohm d) 13 ohm

41. If in an alternating current circuit, impedance is 26 ohm, capacitive reactance is 24 ohm, what is the resistance?

a) 25 ohm c) 12 ohm b) **10 ohm** d) 23 ohm

c) Admittance d) Reactance

c) Equal to

- d) Depends on the circuit
- c) Equal to

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

42. If in an alternating current circuit, capacitance of 30 μ F is connected to a supply of 200V, 50Hz. Find the current in the circuit.

a) 1.38 A

c) 1.74 A d) 0.89 A

c) 10 µF

d) 15 µF

c) 240 V

c) 240 V

d) 100 V

b) 1.89 A

43. If in an alternating current circuit, capacitance C is connected to a supply of 200V,50Hz. Current in the circuit is 1.89 A. Find the capacitance C.

- a) **30 µF**
- b) 20 μF

44. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance

- 12 ohm. Supply of 260 V is connected to the circuit. Calculate the current in the circuit.
 - a) 40 A c) 20 A
 - b) 10 A d) 30 A

45. In ac circuit, resistance 5 ohm is connected with capacitor having capacitive reactance

- 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across resistance.
 - a) 300 V
 - b) 200 V d) 100 V

46. In ac circuit, resistance 5 ohm is connected with a capacitor having capacitive reactance 12 ohm. Supply of 260 V is connected to the circuit. Calculate the voltage across a capacitor.

- a) 300 V
- b) 200 V

47. Find the total voltage applied in a series RLC circuit when i=3mA, V_1 =30V, V_c =18V and R=1000 ohms.

a) 3.95V

b) 51V

c) 32.67V d) 6.67V

48. In an RLC circuit, which of the following is always used as a vector reference?

- a) Voltage
- b) Resistance

49. In an RLC circuit, the power factor is always _

- a) Positive
- b) Negative

50. What is the correct expression for the phase angle in an RLC series circuit?

- a) $\varphi = tan^{-1}(X_L X_C)/R$
- b) $\varphi = \tan^{-1} (X_L + X_C)/R$
- 51. When is $tan\phi$ positive?)
 - a) When inductive reactance is less than capacitive reactance

b) When inductive reactance is greater than capacitive reactance

c) When inductive reactance is equal to capacitive reactance

- d) Current
- c) Depends on the circuit d) Zero
- c) $\phi = \tan(X_L X_C)/R$

d) $\phi = \tan^{-1} (X_L - X)$

- c) Impedance

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- d) When inductive reactance is zero
- 52. When is tanφ negative?

a) When inductive reactance is less than capacitive reactance

- b) When inductive reactance is greater than capacitive reactance
- c) When inductive reactance is equal to capacitive reactance
- d) When inductive reactance is zero
- 53. Which of the following is not ac waveform?
 - a) Sinusoidal
 - b) Constant
- 54. What is not a frequency for ac current?
 - a) 50 Hz
 - b) 55 Hz d) 60 Hz

55. Which type of ac waveform is given in figure?

- a) Sinusoidal
- b) Triangular

c) Squared) complex

c) Resistance

d) Inductance

c) equal

to number of turns in the coil

c) Squared) triangular

c) **0Hz**

d) complex waveform

c) $i = -Vm(sint)/X_L$ d) $i = -Vm(cost)/X_L$

56. The correct expression for the instantaneous current if instantaneous voltage is Vm(sint) in an inductive circuit is?

- a) $i = Vm(sint)/X_L$
 - b) $i = Vm(cost)/X_L$

57. Inductor does not allow sudden changes in?

- a) Voltage
- b) Current
- 58. Inductance is _____
 - a) directly proportional
 - b) inversely proportional
- 59. Choke involve use of _____
 - a) Resistor
 - b) Capacitor

c) **Inductor**d) Transistor

d) not related

60. What is the value of current in an inductive circuit when there is no applied voltage?

- a) Minimum
- b) Maximum

c) Zerod) Cannot be determined

THREE PHASE CIRCUITS

Position in Question Paper

Total Marks-20

Q.1. d) 2-Marks. Q.2. c) 4-Marks. Q.3. c) 4-Marks. Q.4. c) 4-Marks. Q.6. b) 6-Marks.

Descriptive Question

- **1.** Draw phasor diagram for 3φ generated voltages.
- **2.** List any two advantages of 3φ circuits over single phase circuits.
- **3.** List any four observations from the phasor diagram of a 3φ delta connection.
- 4. Three impedances each of Z = 15 + j18W are connected in star across a 400V,3 ϕ , AC. Calculate $-V_{ph}$, I_{ph} , I_L , Pf
- 5. Draw the sinusoidal waveform of 3ph emf and also indicate the phase sequence.
- **6.** State relationship between line voltage and phase voltage, line current and phase current in a balanced delta connection. Draw complete phasor diagram of voltages and current.
- 7. State any four advantages of poly phase circuit over single phase circuit.

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

MCQ Question

(Total number of Question=Marks*3=24*3=72)

Note: Correct answer is marked with **bold**.

1. In a balanced three-phase system-delta load, if we assume the line voltage is $V_{RY} = V \angle 0^0$ as a reference phasor. Then the source voltage V_{YB} is?

- a) V∠0⁰
- b) V∠-120⁰

c) $V \angle 120^{\circ}$ d) $V \angle 240^{\circ}$

- 2. In a balanced three-phase system-delta load, if we assume the line voltage is $V_{RY} = V \angle 0^0$ as a reference phasor. Then the source voltage V_{BR} is? a) V∠120[°] c) V \angle -240°
 - b) V∠240⁰

d) V∠-120[°]

3. In a delta-connected load, the relation between line voltage and the phase voltage is?

- a) line voltage > phase voltage
- b) line voltage < phase voltage
- 4. If the load impedance is $Z \angle \emptyset$, the current (I_R) is?
 - a) (V/Z)∠-Ø
 - b) $(V/Z) \angle Ø$

c) (V/Z)∠90-Ø d) (V/Z)∠-90+Ø

c) line voltage = phase voltage

d) line voltage >= phase voltage

- 5. If the load impedance is $Z \angle \emptyset$, the expression obtained for current (I_Y) is?
 - a) $(V/Z) \angle -120 + \emptyset$ c) $(V/Z) \angle 120 + \emptyset$
 - d) (V/Z)∠-120-Ø

6. If the load impedance is $Z \angle \emptyset$, the expression obtained for current (Iis?

a) (V/Z)∠-240+Ø b) (V/Z)∠-240-Ø

b) (V/Z)∠120-Ø

- c) (V/Z)∠240-Ø d) (V/Z)∠240+Ø
- 7. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 Ø balanced supply. Determine the phase current I_R . Assume the phase sequence to be R_{YR} .
 - a) 44.74∠-63.4[°]A

c) $45.74 \angle -63.4^{\circ} A$

b) 44.74∠63.4⁰A

- d) 45.74∠63.4⁰A

8. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 – \emptyset balanced supply. Determine the phase current I_Y.

- a) 44.74∠183.4⁰A c) 44.74∠183.4⁰A
- b) 45.74∠183.4⁰A d) 45.74∠-183.4⁰A

9. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 – Ø balanced supply. Determine the phase current $I_{\rm B}$.

	В
a) 44.74∠303.4 ⁰ A	c) 45.74∠303.4 ⁰ A
b) 44.74∠-303.4 ⁰ A	d) 45.74∠-303.4 ⁰ A
10. Determine the power (kW) drawn by the load	d.
a) 21	c) 23
b) 22	d) 24
11. The power generated by a machine increases	s percent from single phase
to two phase.	
a) 40.4	b) 41.4

a) 40.4

Maratha Vidya Prasarak Samaj's

Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

<u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

c) 42.4	d) 43.4
12. The percentage of power increased from sin	ngle phase to three phase is?
a) 50	c) 150
b) 100	d) 200
13. When the power factor is the p	power becomes zero 100 times a second in a
50Hz supply.	-
a) 0	c) 2
b) 1	d) 3
14. Which motors are called self-starting motor	rs?
a) single phase	c) three phase
b) two phase	d) four phase
15. In three phase system, the three voltages (c	urrents) differ in phase by
electrical degrees from each other	in a particular sequence.
a) 30	c) 90
b) 60	d) 12
16. In a two phase generator, the armature has	two distinct windings that are displaced
apart.	
a) 45°	c) 135°
b) 90 ⁰	d) 180 ⁰
17. In three phase system at any given instant,	the algebraic sum of three voltages must be?
a) 0	c) 2
b) 1	d) 3
18. Phase sequence depends on the	
a) Field	c) armature
b) rotation of the field	d) rotation of the armature
19. If RR', YY' and BB' constitutes three phase	e sequence if $V'_{RR} = V_m \sin\omega t$ its
corresponding field magnets are in clockwise d	lirection, then $V'_{YY} = ?$
a) V _m sinot	d) $V_m \sin(\omega t - 240^0)$
b) $V_{m}sin(\omega t+120^{0})$	
c) $V_m sin(\omega t - 120^\circ)$	
20. If RR', YY' and BB' constitutes three phase	e sequence if $V'_{RR} = V_m \sin\omega t$ its
corresponding field magnets are in clockwise d	lirection, then the value of V'_{BB} is?
a) $V_m sin(\omega t - 240^\circ)$	c) $V_{\rm m} \sin(\omega t + 240^{\circ})$
b) $V_{m}sin(\omega t - 120^{0})$	d) V _m sinot
21. In a three phase alternator, there are	independent phase windings or coils.
a) 1	c) 3
b) 2	d) 4
22. Each coil in three phase alternator has	number of terminals.
a) 2	c) 6
b) 4	d) 8

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

23. In wye or star connection	of the three phases are joined together within
the alternator.	
a) similar ends	c) one similar end, two opposite ends
b) opposite ends	d) one opposite end, two opposite ends
24. The voltage between and	is called phase voltage.
a) line and line	c) neutral point and reference
b) line and reference	d) line and neutral poin
25. The voltage between is	called line voltage.
a) line and neutral point	c) line and line
b) line and reference	d) neutral point and reference
26. In the Delta or Mesh connection, there will	l be number of common
terminals.	
a) 1	c) 3
b) 2	d) 0
27. The relation between line voltage and pha	se voltage in Delta or Mesh connection is?
a) $V_{\text{phase}} > V_{\text{line}}$	c) $V_{\text{phase}} = V_{\text{line}}$
b) $V_{\text{phase}} < V_{\text{line}}$	d) $V_{\text{phase}} \ge V_{\text{line}}$
28. Which of the following voltage is a phase	voltage in the delta connection?
a) V _{RN}	c) V _{YN}
b) V _{BR}	d) V _{BN}
29. A balanced delta-connected load of $(2+j3)$	Ω per phase is connected to a balanced three-
phase 440V supply. The phase current is 10A	. Find the total active power.
a) 7.26W	c) 7260W
b) 726W	d) 72.6W
30. A balanced delta-connected load of $(2+j3)$	Ω per phase is connected to a balanced three-
phase 440V supply. The phase current is 10A	Find the apparent power.
a) 10955.67 VAR	c) 109.5567 VAR
b) 10.95567 VAR	d) 1.095567 VAR
31. In star connected system, V_{RY} is equal to?	
a) V _{YR}	c) 2V _{YR}
b) -V _{YR}	d) $3V_{YR}$
32. In three phase system, the line voltage V_{R}	Y is equal to?
a) phasor sum of V_{RN} and V_{NY}	c) phasor sum of V_{RN} and V_{NY}
b) phasor difference of V_{RN} and V_{NY}	d) algebraic sum of V_{RN} and V_{NY}
33. The relation between the lengths of the ph	asors V_{RN} and $-V_{YN}$ is?
a) $ V_{RN} > - V_{YN} $	c) $ V_{RN} = - V_{YN} $
b) $ V_{RN} < - V_{YN} $	d) $ V_{RN} > = - V_{YN} $
34. In a star connected system, the phasors $V_{\rm H}$	$V_{\rm YN}$ are apart.
a) 15 ⁰	c) 45°
b) 30°	d) 60°
35. The relation between V_{RY} . Vph in a star co	onnected system is?
a) $V_{RY} = V_{ph}$	c) $V_{RY} = 3\sqrt{3}V_{ph}$
b) $V_{RY} = \sqrt{3}V_{nh}$	d) $V_{RY} = 3V_{nh}$
Prepared By: Prof.P.A.Shinde(Electrical Engineering)	Page 32 of 58

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

36. In a star connected system, the relation between	V_{YB}, V_{ph} is?
a) $V_{YB} = V_{ph}$	c) $V_{YB} = 3V_{ph}$
b) $V_{YB} = 3\sqrt{3}V_{ph}$	d) $V_{YB} = \sqrt{3}V_{ph}$
37. The voltages, V_{BR} , V_{ph} are related in star conne	cted system is?
a) $V_{BR} = 3V_{ph}$	c) $V_{BR} = \sqrt{3}V_{ph}$
b) $V_{BR} = 3\sqrt{3}V_{ph}$	d) $V_{BR} = V_{ph}$
38. In a delta connected system, the voltage across	the terminals R and Y is $400 \ge 0^0$.
Calculate the line voltage V_{RY} . Assume R_{RY} phase	sequence.
a) 400∠0 ⁰	c) $400 \angle -120^{\circ}$
b) 400∠120 ⁰	d) $400 \angle 240^{\circ}$
39. In a delta connected system, the voltage across	the terminals R and Y is $400 \ge 0^0$. Find
the line voltage V_{YB} .	
a) $400 \ge 120^{\circ}$	c) 400∠240 ⁰
b) 400∠-120 [°]	d) $400 \angle -240^{\circ}$
40. In a delta connected system, the voltage across	the terminals R and Y is $400 \ge 0^{\circ}$. Find
the line voltage V_{BR} .	
a) $400 \angle 240^{\circ}$	c) 400∠-240 ⁰
b) $400 \neq 120^{\circ}$	d) $400 \angle -120^{\circ}$
41. In delta-connected system, the currents $I_{\rm P}$, $I_{\rm V}$, $I_{\rm P}$	are equal in magnitude and they are
displaced by from one another.	
a) 0^0	c) 90^{0}
b) 60°	d) 120°
42 In a delta-connected system the currents $I_{\rm p} = I_{\rm s}$	$a = I_{x} = ?$
a) $I_{\rm III}$	$c) 3I_{\rm Ph}$
h) $2I_{\rm N}$	d) $4I_{\rm Pl}$
43. The relation between I_L and I_{D_h} is in a delta con	nected system is?
a) $I_{I} = I_{Dh}$	c) $I_{I} = 3 I_{Ph}$
b) $\mathbf{I}_{\mathbf{I}} = \sqrt{3} \mathbf{I}_{\mathbf{P}\mathbf{h}}$	d) $I_{\rm L} = 3\sqrt{3}I_{\rm Pb}$
44. The line currents are behind respective	ve phase currents in a delta connected
system.	
a) 120°	c) 60^{0}
b) 90°	d) 30°
45. In a delta connected system, the expression of r	power (P) is?
a) $V_{I}I_{I}\cos\phi W$	c) $3V_{I}I_{I}\cos\phi$ W
b) $\sqrt{3}$ V ₁ I ₁ coso W	d) $3\sqrt{3}V_{I}I_{I}\cos\phi$ W
46. In a balanced three-phase system-delta load, if	we assume the line voltage is $V_{PV} =$
$V/0^{0}$ as a reference phase by seein definition, if	$v \in V_{VR}$ is?
a) $V/0^0$	c) $V/120^{0}$
b) V_{-120}^{0}	d) $V/240^{\circ}$
47 In a balanced three-phase system-delta load if	we assume the line voltage is V_{nv} –
$V/0^0$ as a reference phaser. Then the source voltage	$V_{\rm RP}$ is?
$_{2}$ V/120 ⁰	b) $V_{2}^{2} 10^{0}$
$a_j \neq 2120$	0 $1 \leq 240$

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

c) V∠-240[°] d) V∠-120⁰ 48. In a delta-connected load, the relation between line voltage and the phase voltage is? a) line voltage > phase voltage c) line voltage = phase voltage b) line voltage < phase voltage d) line voltage >= phase voltage 49. If the load impedance is $Z \angle \emptyset$, the current (I_R) is? a) $(V/Z) \angle -\emptyset$ c) (V/Z)∠90-Ø b) $(V/Z) \angle Ø$ d) (V/Z)∠-90+Ø 50. If the load impedance is $Z \angle \emptyset$, the expression obtained for current (I_y) is? a) (V/Z)∠-120+Ø c) $(V/Z) \angle 120 + \emptyset$ b) (V/Z)∠120-Ø d) (V/Z)∠-120-Ø 51. If the load impedance is $Z \angle \emptyset$, the expression obtained for current (Iis? a) (V/Z)∠-240+Ø c) (V/Z)∠240-Ø b) (V/Z)∠-240-Ø d) (V/Z)∠240+Ø 52. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 $-\emptyset$ balanced supply. Determine the phase current I_R. Assume the phase sequence to be R_{YB}. c) $45.74 \angle -63.4^{\circ} A$ a) 44.74∠-63.4⁰A d) 45.74∠63.4⁰A b) 44.74∠63.4⁰A 53. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 $-\emptyset$ balanced supply. Determine the phase current I_y. a) 44.74∠183.4⁰A c) 44.74∠183.4^oA d) 45.74∠-183.4⁰A b) 45.74∠183.4⁰A 54. A three-phase balanced delta connected load of $(4+i8) \Omega$ is connected across a 400V, 3 -Ø balanced supply. Determine the phase current I_B. a) 44.74∠303.4[°]A c) $45.74 \angle 303.4^{\circ}$ A d) 45.74∠-303.4⁰A b) 44.74∠-303.4^oA 55. Determine the power (kW) drawn by the load. a) 21 c) 23 b) 22 d) 24 56. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400W and -35W. Calculate the total active power. a) 360 c) 370 b) 365 d) 375 57. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400W and -35W. Find the power factor. a) 0.43 c) 0.63 b) 0.53 d) 0.73 58. The wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400W and -35W. Find the reactive power. a) 751.44 c) 753.44 b) 752.44 d) 754.44 59. The input power to a three-phase load is 10kW at 0.8 Pf. Two watt meters are connected to measure the power. Find the reading of higher reading wattmeter.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. **RSM POLY** Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- a) 7.165
- b) 6.165

- c) 6.165
- d) 4.165 60. The input power to a three-phase load is 10kW at 0.8 Pf. Two watt meters are connected to measure the power. Find the reading of lower reading wattmeter.
 - a) 1.835
 - b) 2.835

- c) 3.835
- d) 4.835

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

NETWORK ERDUCTION AND PRINCIPLES OF CIRCUIT ANALYSIS

Position in Question Paper

Total Marks-16

- Q.1. e) 2-Marks.
- Q.2. d) 4-Marks.
- Q.3. d) 4-Marks.
- Q.5. b) 6-Marks.

Descriptive Question

- 1. Three resistor each of 23W are connected in delta across a 230V, 3φ , 50Hz AC. Calculate the power consumed by the load.
- 2. State only the formula for star to delta transformation.
- **3.** Find the value of V of Figure if the voltage at node A is 12V.

4. Derive the formulae for star to delta, and star to delta transformation.

5. Using mesh analysis finds value of R1 and R2 shown in Figure

6. Find current through 8 W resistance using nodal analysis in Figure

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

MCQ Question

(Total number of Question=Marks*3=16*3=48)

Note: Correct answer is marked with **bold**.

- 1. Mesh analysis is applicable for non planar networks also.
 - a) True
- 2. A mesh is a loop which contains _____ number of loops within it.
 - a) 1 b) 2

- d) no loop 3. Consider the circuit shown below. The number mesh equations that can be formed are?

b) 2

c) 3 d) 4

b) false

c) 3

4. In the figure shown below, the current through loop 1 be I_1 and through the loop 2 be I_2 , then the current flowing through the resistor R_2 will be?

a) I ₁	c) I_1-I_2
b) I ₂	d) I_1+I_2

5. If there are 5 branches and 4 nodes in graph, then the number of mesh equations that can be formed are?

a) 2	c) 6
b) 4	d) 8

6. Consider the circuit shown in the figure. Find voltage V_x .

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

7. Consider the circuit shown below. Find the current I_1 .

a) 3.3	c) 5.3
b) 4.3	d) 6.3

8. Consider the following figure. Find the current I_2 (.

a) 1.7	c) 3.6
b) 2.6	d) 4.6

9. Consider the following figure. Find the current I_3 (.

a) 4 c) 5 b) 4.7 d) 5.7 10. Find current through R_2 resistor.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

11. If there are 8 nodes in network, we can get _____ number of equations in the nodal analysis.

- a) 9
- b) 8

- c) 7 d) 6
- 12. Nodal analysis can be applied for non planar networks also.
 - a) True

b) 2

b) False

- 13. In nodal analysis how many nodes are taken as reference nodes?
 - a) 1

c) 3 d) 4

14. Find the voltage at node P in the following figure.

a) 8V	c) 10V
b) 0 V	d) 11V

b) 9V

d) IIV

15. Find the resistor value $R_1(\Omega)$ in the figure shown below.

c) 12 a) 10 d) 13 b) 11

16. Find the value of the resistor $R_2(\Omega)$ in the circuit shown below. R1

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

17. Find the voltage (V) at node 1 in the circuit shown.

a) 5.32 b) 6.32 c) 7.32

d) 8.32

18. Find the voltage (V) at node 2 in the circuit shown below.

a)	2.7	c) 4.7
b)	3.7	d) 5.7

b) 3.7

19. Find the voltage at node 1 of the circuit shown below.

a) 32.7	c) 34.7
h) 337	d) 35.7

20. Find the voltage at node 2 of the circuit shown below.

a)	13	c) 15
b)	14	d) 16

21. By using source transformation voltage source in series resistor is replaced by

a) Voltage source in series with a resistor

b) Current source in parallel with a resistor

- c) Voltage source in parallel with a resistor
- d) Current source in series with a resistor

PSM POLV

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- 22. Source Transformation is _
 - a) Unilateral
 - b) Unique

- c) Bilateral
- d) Complicated
- 23. If there are two resistors in parallel and in series with a voltage source then

a) Parallel resistor has no effect

- b) Series resistor has no effect
- c) Both has their respective effects
- d) Both has no effect on the voltage source
- 24. Using source transformation, calculate the voltage.

c) 0.230V

b) 39V

a) 7Ω

b) 10Ω

d) 36V

25. Which element(s) has no effect in the given circuit?

c) Both 7Ω and 10Ω

d) Voltage source.

26. The value of current source is ______ after replacing the given network with a single current source and a resistor.

a) 70V b) 60V

c) 90Vd) 80V

27. If there is a 12A current source in series with 2Ω and in parallel with a 4Ω resistor, then voltage V=?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

a) 24V

c) 3V d) 6V

b) 48V 28. Find the current flowing through 4Ω resistor shown in network below.

- a) 1.33A
- b) 2.35A

c) 1.66A

d) 2.66A

29. Calculate the power delivered by the 50V source.

a) 274W b) 276W

c) 285W d) 291W

30. Source transformation can be used for dependent sources. b) False

a) True

31. Using source transformation, calculate vm.

a) 2v	c) 1v
b) -2v	d) -1v

32. Find the voltage value Vm in the circuit given below.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

34. In source transformation,

- a) Voltage sources remain same
- b) Current sources remain same
- c) Both voltage and current sources undergo change
- d) Resistances/Impedances remain same

35. If there are five 20V voltage sources in parallel, then in source transformation

- a) All are considered
- b) Only one is considered

- c) All are ignored
- d) Only 2 are considered

36. Find the equivalent delta circuit.

- c) 9.69 ohm, 34.71 ohm, 6.59 ohm
- a) 9.69 ohm, 35.71 ohm, 6.59 ohm b) 10.69 ohm, 35.71 ohm, 6.59 ohm
- d) 10.69 ohm, 35.71 ohm, 7.59 ohm

37. Which, among the following is the correct expression for star-delta conversion?

- a) R1=Ra*Rb/(Ra+Rb+Rc), R2=Rb*Rc/(Ra+Rb+Rc), R3=Rc*Ra/(Ra+Rb+Rc)
- b) R1=Ra/(Ra+Rb+Rc), R2=Rb/(Ra+Rb+Rc), Rc=/(Ra+Rb+Rc)
- c) R1=Ra+Rb+Ra*Rb/Rc, R2=Rc+Rb+Rc*Rb/Ra, R3=Ra+Rc+Ra*Rc/Rb
- d) R1=Ra*Rb/Rc, R2=Rc*Rb/Ra, R3=Ra*Rc/Rb

38. Find the equivalent resistance between X and Y.

- a) 3.33 ohm
- b) 4.34 ohm

- c) 5.65 ohm
- d) 2.38 ohm

39. Delta connection is also known as____

a) Y-connection

b) Mesh connection

- c) Either Y-connection or mesh connection
- d) Neither Y-connection nor mesh connection

40. Ra is resistance at A, Rb is resistance at B, Rc is resistance at C in star connection. After transforming to delta, what is resistance between B and C? Prepared By: Prof.P.A.Shinde(Electrical Engineering)

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

a) Rc+Rb+Rc*Rb/Ra

b) Rc+Rb+Ra*Rb/Rc

41. Ra is resistance at A, Rb is resistance at B, Rc is resistance at C in star connection. After transforming to delta, what is resistance between A and C?

- a) Ra+Rb+Ra*Rb/Rc
- b) Ra+Rc+Ra*Rc/Rb

42. Ra is resistance at A, Rb is resistance at B, Rc is resistance at C in star connection. After transforming to delta, what is resistance between A and B?

- a) Rc+Rb+Ra*Rb/Rc
- b) Ra+Rb+Ra*Rc/Rb

43. If a 10hm 20hm and 32/30hm resistor is connected in star, find the equivalent delta connection.

- a) 34 ohm, 18.67 ohm, 3.19 ohm
- b) 33 ohm, 18.67 ohm, 3.19 ohm

44. If an 8/90hm, 4/30hm and 2/30hm resistor is connected in star, find its delta equivalent.

- a) 40hm, 30hm, 20hm
- b) 10hm, 30hm, 20hm
- 45. Find the equivalent resistance between A and B.
 - 11 ohm 10 ohm 10 ohm
 - a) 320hm
 - b) 310hm

46. Source transformation technique is mainly based on _____ law.

- a) Newton's
- b) Kirchhoff's
- 47. In source transformation,
 - a) Voltage sources remain same
 - b) Current sources remain same
 - c) Both voltage and current sources undergo change

d) Resistances/Impedances remain same

48. If there are two resistors in parallel and in series with a voltage source then

a) Parallel resistor has no effect

- b) Series resistor has no effect
- c) Both has their respective effects
- d) Both has no effect on the voltage source

Page 44 of 58

- c) 33 ohm, 19.67 ohm, 3.19 ohm
- d) 34 ohm, 19.67 ohm, 3.19 ohm
- c) 40hm, 10hm, 20hm
- d) 40hm, 30hm, 10hm

d) 290hm

c) 300hm

- c) Ohm's
- d) Einstein's

- c) Ra+Rb+Ra*Rc/Rb
- d) Rc+Rb+Rc*Ra/Rb

c) Ra+Rb+Ra*Rc/Ra

d) Ra+Rc+Ra*Rb/Rc

c) Ra+Rb+Ra*Rb/Rc

d) Ra+Rc+Ra*Rc/Rb

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

NETWORK THEOREMS

Position in Question Paper

Total Marks-24

- Q.1. f) 2-Marks. g) 2-Marks.
- Q.3. e) 4-Marks.
- **O.4.** d) 4-Marks.
- Q.5. c) 6-Marks.
- Q.6. c) 6-Marks.

Descriptive Question

- **1.** State 'Norton's' theorem with advantages, disadvantages, limitation, application and stepwise procedure to apply it.
- 2. State maximum power transfer theorem for AC circuits with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
- **3.** State superposition theorem for AC and DC circuits with advantages, disadvantages, limitation, application and stepwise procedure to apply it.
- **4.** State Thevenin's theorem with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
- **5.** State Reciprocity theorem with advantages, disadvantages, limitation, and application and stepwise procedure to apply it.
- **6.** Find R_{TH} from following figure

7. Find the value of maximum power transferred to $R_L = 6W$ from the source of figure

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

8. Using Thevenin's theorem find current through 5W resistance. figure

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

MCQ Question

(Total number of Question=Marks*3=24*3=72)

Note: Correct answer is marked with **bold**.

- 1. The Norton current is the
 - a) Short circuit current
 - b) Open circuit current
 - c) Open circuit and short circuit current
 - d) Neither open circuit nor short circuit current
- 2. Norton resistance is found by?
 - a) Shorting all voltage sources
 - b) Opening all current sources
 - c) Shorting all voltage sources and opening all current sources
 - d) Opening all voltage sources and shorting all current sources
- 3. Norton's theorem is true for
 - a) Linear networks
 - b) Non-Linear networks
 - c) Both linear networks and nonlinear networks
 - d) Neither linear networks nor non-linear networks
- 4. In Norton's theorem Isc is
 - a) Sum of two current sources

b) A single current source

- c) Infinite current sources
- d) 0
- 5. Isc is found across the terminals of the network.
 - a) Input

b) Output

- c) Neither input nor output d) Either input or output
- 6. Can we use Norton's theorem on a circuit containing a BJT?
 - a) Yes

c) Depends on the BJT

b) **No**

- d) Insufficient data provided
- 7. Calculate the Norton resistance for the following circuit if 5 ohm is the load resistance. 3 ohm 10 ohm

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

8. Calculate the short circuit current is the 5 ohm resistor is the load resistance.

Maratha Vidya Prasarak Samaj's **Rajarshi Shahu Maharaj Polytechnic, Nashik** Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

15. Find the value of Vx due to the 16V source.

b) Non-linear systems

- c) Both linear and non-linear systems
- d) Neither linear nor non-linear systems
- 20. Superposition theorem does not work for _____
 - a) Current
 - b) Voltage
 - c) Power
 - d) Works for all: current, voltage and power
- 21. Calculate the Thevenin resistance across the terminal AB for the following circuit.

c) 3.43 ohm

d) 2.32 ohm

a) 4.34 ohm

- b) **3.67 ohm**
- 22. Calculate V_{th} for the given circuit.

23. Calculate the current across the 4 ohm resistor.

25. Thevenin resistance is found by _____

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- a) Shorting all voltage sources b) Opening all current sources c) Shorting all voltage sources and opening all current sources d) Opening all voltage sources and shorting all current sources 26. Thevenin's theorem is true for a) Linear networks b) Non-Linear networks c) Both linear networks and nonlinear networks d) Neither linear networks nor non-linear networks 27. In Thevenin's theorem Vth is a) Sum of two voltage sources c) Infinite voltage sources b) A single voltage source d) 0 28. Vth is found across the terminals of the network. c) Neither input nor output a) Input d) Either input or output b) Output 29. Which of the following is also known as the dual of Thevenin's theorem? a) Norton's theorem c) Maximum power transfer theorem b) Superposition theorem d) Millman's theorem 30. Can we use Thevenin's theorem on a circuit containing a BJT? a) Yes c) Depends on the BJT d) Insufficient data provided b) No 31. The maximum power drawn from source depends on _ a) Value of source resistance c) Both source and load resistance b) Value of load resistance d) Neither source or load resistance 32. The maximum power is delivered to a circuit when source resistance is ______ load resistance. a) Greater than c) Less than d) Greater than or equal to **b)** Equal to 33. If source impedance is a complex number Z, then load impedance is equal to _____ a) Z' c) -Z' d) Z b) -Z 34. If ZL=Zs', then RL=? a) -RL c) -Rs b) Rs d) 0 35. Calculate the value of RL across A and B. 10V >3 ohm a) 3.450hm
 - b) 2.910hm

- c) 6.340hm
- d) 1.540hm

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

36. Calculate Eth.

b) 4.57V

c) 3.23V

d) 5.34V

37. Calculate the maximum power transferred.

a) 1.79W

b) 4.55W

38. Does maximum power transfer imply maximum efficiency?

a) Yes

c) Sometimes

c) 5.67W

d) 3.78W

- d) Cannot be determined
- 39. Under the condition of maximum power efficiency is?
 - a) 100%
 - b) 0%

b) No

d) **50%**

c) 30%

40. Name some devices where maximum power has to be transferred to the load rather than maximum efficiency.

- a) Amplifiers
- b) Communication circuits

c) Both amplifiers and communication circuits

d) Neither amplifiers nor communication

41. To check for the Reciprocity Theorem we consider _____ of response to excitation.

a) Ratio

d) subtraction

c) Product

- 42. For the Reciprocity Theorem to satisfy the ratio of response to excitation before and after the source is replaced should be?
 - a) different

b) Addition

- b) Same
- c) before source is replaced is greater than after the source is replaced
- d) before source is replaced is less than after the source is replaced
- 43. The circuit which satisfies Reciprocity Theorem is called?
 - a) Short circuit
 - b) Open circuit

- c) Linear circuit
- d) Non-linear circuit

44. Find the current through the 2Ω (c-resistor in the circuit shown below.

- a) 0.143
- b) 1.43

45. In the following circuit, the current drawn by 2Ω resistor (a-after the source is replaced is?

46. The following circuit satisfies Reciprocity Theorem.

a) True b) False 47. Find the current through 3Ω resistor in the circuit shown below.

48. Find the current through 2Ω resistor after source is replaced in the below circuit.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

- a) 4
- b) 3

49. The following circuit satisfies the reciprocity theorem.

a) False

b) True

c) 2d) 1

50. While considering Reciprocity theorem, we consider ratio of response to excitation as ratio of?

a) voltage to voltage

c) voltage to current

b) current to current

d) none of the mentioned

51. Consider the figure shown below. Find the voltage (V) at node 1.

52. Consider the figure shown below. Find the voltage (V) at node 2.

53. Consider the figure shown below. Find the voltage (V) at node 3.

Maratha Vidya Prasarak Samaj's **Rajarshi Shahu Maharaj Polytechnic, Nashik** Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

54. Consider the figure shown below. Find the power (W) delivered by the source 6A.

c) 22.3

b) 1.3

55. Find the voltage (V) at node 1 in the circuit shown below.

c) 20

b) 19

d) 21

56. Consider the figure shown below. Find the voltage (V) at node 2.

a) 11.5b) 12

c) 12.5d) 13

57. Find the voltage (V) at node 3 in the figure shown below.

58. Find the power absorbed by 5Ω resistor in the following figure.

c) 70.6

b) 65.5

d) 75

59. Find the value of the voltage (V) in the equivalent voltage source of the current source shown below.

60. Find the value of the current (in the equivalent current source of the voltage source shown below.

a) 1 c) 3 b) 2 d) 4

61. Find current through R_2 resistor.

c) 3.5d) 3.75

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

62. If there are 8 nodes in network, we can get _____ number of equations in the nodal analysis.

- a) 9
- b) 8

- c) 7d) 6
- 63. Nodal analysis can be applied for non planar networks also.
 - a) True

c) False

- 64. In nodal analysis how many nodes are taken as reference nodes?
 - a) 1
 - b) 2

c) 3d) 4

65. Find the voltage at node P in the following figure.

66. Find the resistor value $R_1(\Omega)$ in the figure shown below.

67. Find the value of the resistor $R_2(\Omega)$ in the circuit shown below.

Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. <u>RSM POLY</u> Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai & Govt. of Maharashtra, Mumbai.

68. Find the voltage (V) at node 1 in the circuit shown.

a) 5.32	c) 7.32
b) 6.32	d) 8.32

69. Find the voltage (V) at node 2 in the circuit shown below.

a) 2.7	c) 4.7
b) 3.7	d) 5.7

70. Find the voltage at node 1 of the circuit shown below.

a)	32.7	c) 34.7
b)	33.7	d) 35.7

71. Find the voltage at node 2 of the circuit shown below.

a) 13			c)	15
b) 14			d)	16
72. In nodal	analysis how mai	ny nodes are	taken as refe	rence nodes?

- a) 1 c) 3
- b) 2 d) 4