Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Subject: - Data Structure Using 'C'

 (22317)Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

(S) $\mathrm{S} / \square \square \square$

Chapter No.	Name of chapter	Marks Without Options	Marks With Options
$\mathbf{1}$	Introduction To Data Structures	06	08
$\mathbf{2}$	Searching And Sorting	12	18
$\mathbf{3}$	Stacks And Queues	20	30
$\mathbf{4}$	Linked Lists	16	24
$\mathbf{5}$	Trees And Graphs	$\mathbf{1 6}$	22
		$\mathbf{7 0}$	$\mathbf{1 0 2}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

BOARD THEORY PAPER PATTERN FOR DSU[22317]

Q. 1		Attempt any FIVE	$5 * 2=10$	Course Outcome (CO)
	a)	Introduction To Data Structures		CO-317.1
	b)	Stacks And Queues		CO-317.3
	c)	Trees And Graphs		CO-317.5
	d)	Stacks And Queues		CO-317.3
	e)	Trees And Graphs		CO-317.5
	f)	Introduction To Data Structures		CO-317.1
	g)	Stacks And Queues		CO-317.3
Q. 2		Attempt any THREE	$3 * 4=12$	
	a)	Searching And Sorting		CO-317.2
	b)	Linked Lists		CO-317.4
	c)	Stacks And Queues		CO-317.3
	d)	Trees And Graphs		CO-317.5
Q. 3		Attempt any THREE	$3 * 4=12$	
	a)	Introduction To Data Structures		CO-317.1
	b)	Stacks And Queues		CO-317.3
	c)	Searching And Sorting		CO-317.2
	d)	Trees And Graphs		CO-317.5
Q. 4		Attempt any FOUR	$3 * 4=12$	
	a)	Searching And Sorting		CO-317.2
	b)	Trees And Graphs		CO-317.5
	c)	Linked Lists		CO-317.4

	d)	Stacks And Queues	CO-317.3
	e)	Linked Lists	CO-317.4
Q.5		Attempt any TWO	
	a)	Stacks And Queues	CO-317.3
	b)	Trees And Graphs	CO-317.5
	c)	Linked Lists	CO-317.4
Q.6		Attempt any Two	
	a)	Searching And Sorting	CO-317.2
	b)	Stacks And Queues	CO-317.3
	c)	Linked Lists	CO-317.4

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Syllabus:-

Unit No.	Name of the Unit	Course Outcome (CO)
$\mathbf{1}$	Introduction To Data Structures	CO-317.1
$\mathbf{2}$	Searching And Sorting	CO-317.2
$\mathbf{3}$	Stacks	CO-317.3

Q. 1	Attempt any FOUR	4*2=8Marks	Course Outcome (CO)
a)	Introduction To Data Structures		CO-317.1
b)	Searching And Sorting		CO-317.2
c)	Stacks		CO-317.3
d)	Searching And Sorting		CO-317.2
e)	Introduction To Data Structures		CO-317.1
f)	Stacks		CO-317.3
Q. 2	Attempt any THREE	3*4=12 Marks	
a)	Searching And Sorting		CO-317.2
b)	Introduction To Data Structures		CO-317.1
c)	Searching And Sorting		CO-317.2
d)	Stacks		CO-317.3

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

CLASS TEST - II PAPER PATTERN DSU[22317]

Syllabus:-

Unit No.	Name of the Unit	Course Outcome $(\mathbf{C O})$
$\mathbf{1}$	Queues	CO-317.3
$\mathbf{4}$	Linked Lists	CO-317.4
$\mathbf{5}$	Trees And Graphs	CO-317.5

Q. 1	Attempt any FOUR	4*2=8Marks	Course Outcome (CO)
a)	Queues		CO-317.3
b)	Queues		CO-317.3
c)	Linked Lists		CO-317.4
d)	Linked Lists		CO-317.4
e)	Trees And Graphs		CO-317.5
f)	Trees And Graphs		CO-317.5
Q. 2	Attempt any THREE	3*4=12 Marks	
a)	Queues		CO-317.3
b)	Queues		CO-317.3
c)	Linked Lists		CO-317.4
d)	Trees And Graphs		CO-317.5

COURSE OUTCOME (CO)

> COURSE:- DSU (22317)

PROGRAMME: - CM

CO.NO	Course Outcome
CO-317.1	Perform basic operations on arrays.
CO-317.2	Apply different searching and sorting techniques.
CO-317.3	Implement basic operations on stack and queue using array representation.
CO-317.4	Implement basic operations on Linked List.
CO-317.5	Implement program to create and traverse tree to solve problems.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

1. Introduction To Data Structures

Position in Question Paper

Total Marks-06
Q.1. a) 2-Marks.
Q.1. f) 2-Marks.
Q.3. a) 4-Marks.

Descriptive Questions

1. Define the term algorithm.
2. Differentiate between linear and non-linear data structures on any two parameters.
3. List any four operations on data structure.
4. Define Abstract Data Type.
5. Write any four applications of data structure.
6. Explain the term: i) Time complexity ii) Space Complexity.
7. Write ' C ' program for deletion of an element from an array.
8.

Implement C Program for performing following operations on Array: Insertion, Display.

MCQ Questions

(Total number of Question=Marks*3=06*3=18)

1. Two main measures for the efficiency of an algorithm are
A. Processor and memory
C. Time and space
B. Complexity and capacity
D. Data and space
2. The time factor when determining the efficiency of algorithm is measured by
A. Counting microseconds
B. Counting the number of key operations
C. Counting the number of statements

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
D. Counting the kilobytes of algorithm
3. The space factor when determining the efficiency of algorithm is measured by
A. Counting the maximum memory needed by the algorithm
B. Counting the minimum memory needed by the algorithm
C. Counting the average memory needed by the algorithm
D. Counting the maximum disk space needed by the algorithm
4. Which of the following case does not exist in complexity theory
A. Best case
C. Average case
B. Worst case
D. Null case
5. The Worst case occur in linear search algorithm when
A. Item is somewhere in the middle of the array
B. Item is not in the array at all
C. Item is the last element in the array
D. Item is the last element in the array or is not there at all
6. The Average case occur in linear search algorithm
A. When Item is somewhere in the middle of the array
B. When Item is not in the array at all
C. When Item is the last element in the array
D. When Item is the last element in the array or is not there at all
7. The complexity of the average case of an algorithm is
A. Much more complicated to analyze than that of worst case
B. Much more simpler to analyze than that of worst case
C. Sometimes more complicated and some other times simpler than that of worst case
D. None or above
8. The complexity of linear search algorithm is
A. O(n)
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
9. The complexity of Binary search algorithm is
A. O (n)
B. $\mathbf{O}(\log n)$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
10. The complexity of Bubble sort algorithm is
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}(\log n)$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
11. The complexity of merge sort algorithm is
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}(\log n)$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $O(n \log n)$
12. The indirect change of the values of a variable in one module by another module is called
A. Internal change
C. Side effect
B. Inter-module change
D. Side-module update
13. Which of the following data structure is not linear data structure?
A. Arrays
C. Both of above
B. Linked lists
D. None of above
14. Which of the following data structure is linear data structure?
A. Trees
C. Arrays
B. Graphs
D. None of above
15. The operation of processing each element in the list is known as
A. Sorting
C. Inserting
B. Merging
D. Traversal
16. Finding the location of the element with a given value is:
A. Traversal
C. Sort
B. Search
D. None of above
17. Arrays are best data structures

A. For relatively permanent collections of data

B. For the size of the structure and the data in the structure are constantly changing
C. For both of above situation
D. For none of above situation
18. Linked lists are best suited
A. for relatively permanent collections of data
B. for the size of the structure and the data in the structure are constantly changing
C. for both of above situation
D. for none of above situation
19. Each array declaration need not give, implicitly or explicitly, the information about
A. The name of array
B. The data type of array
C. The first data from the set to be stored

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
D. The index set of the array
20. The elements of an array are stored successively in memory cells because
A. By this way computer can keep track only the address of the first element and the addresses of other elements can be calculated
B. The architecture of computer memory does not allow arrays to store other than serially
C. Both of above
D. None of above

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

2. Searching and sorting

Position in Question Paper
Total Marks- 12
Q.2. a) 2-Marks.
Q.3. c) 4-Marks.
Q.4. a) 4-Marks.
Q.6. a) 6-Marks.

Descriptive Questions

1. Define searching and give its type.
2. Define sorting and give its type.
3. Describe working of Linear Search with example.
4. Describe working of Binary Search with example.
5. Differentiate between Binary Search and Sequential Search.

Find the position of element 29 using binary search method in an array 'A' given
6. below : $\mathrm{A}=\{11,5,21,3,29,17,2,43\}$
7. Describe working of bubble sort with example.
8. Write an algorithm for Selection sort.

Sort the following numbers in ascending order using Insertion sort.
9. Given Numbers: 348, 14, 614, 5381, 47. and Write the output after each iteration. With explanation sort the given no. in ascending order using radix sort.
Given Numbers: 348, 14, 614, 5381, 47.
Sort the following numbers in ascending order using quick sort.
Given numbers 50, 2, 6, 22, 3, 39, 49, 25, 18, 5.
Sort the following numbers in ascending order using Bubble sort.
12. Given Numbers: $348,14,614,5381,47$ and Write the output after each iteration.
Describe working of selection sort method. Also sort given input list in ascending order using selection sort input list : 55, 25, 5, 15, 35.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Questions

(Total number of Question=Marks*3=12*3=36)

1) Which of the following is an external sorting?
A. Insertion Sort
C. Merge Sort
B. Bubble Sort
D. Tree Sort
2) Very slow way of sorting is
A. Insertion sort
C. Bubble sort
B. Heap sort
D. Quick sort
3) Which of the following is an internal sorting?
A. Tape Sort
C. Merge Sort
B. 2-way Merge Sort
D. Tree Sort
4) Sorting a file F usually refers to sorting F with respect to a particular key called.....
A. Basic key
C. Index key
B. Primary key
D. Starting key
5) The time complexity of quick sort is \qquad
A. O(n)
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
B. $\mathrm{O}(\log n)$
D. $O(n \log n)$
6) Selection sort first finds them \qquad element in the list and put it in the first position.
A. Middle element
C. Last element
B. Largest element
D. Smallest element
7) Quick sort is also known as. \qquad
A. Merge sort
C. Shell sort
B. Tree sort
D. Partition and exchange sort
8) The operation that combines the element is of A and B in a single sorted list C with $\mathrm{n}=\mathrm{r}+\mathrm{s}$ element is called....
A. Inserting
C. Merging
B. Mixing
D. Sharing
9) A tree sort is also known as \qquad sort.
A. Quick
C. Heap
B. Shell
D. Selection
10)sorting is good to use when alphabetizing large list of names.
A. Merge
C. Radix

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
B. Heap
D. Bubble
11) The easiest sorting is \qquad
A. Quick sort
C. Heap sort
B. Shell sort
D. Selection sort
12) Which of the following sorting algorithm is of divide and conquer type?
A. Bubble sort
C. Quick sort
B. Insertion sort
D. Merge sort
13) Merging k sorted tables into a single sorted table is called......
A. k way merging
C. $\mathrm{k}+1$ merge
B. $\mathrm{k}^{\text {th }}$ merge
D. k-1 merge
14) The function used to modify the way of sorting the keys of records is called \qquad
A. Indexing function
C. Addressing function
B. Hash function
D. All of the above
15) If the number of record to be sorted large and the key is short, then \qquad sorting can be efficient.
A. Merge
C. Radix
B. Heap
D. Bubble
16) The total number of comparisons in a bubble sort is \qquad
A. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathrm{O}(2 \mathrm{n})$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $\mathrm{O}(\mathrm{n})$
17) If the number of record to be sorted large and the key is long, then \qquad sorting can be efficient.
A. Merge
C. Quick
B. Heap
D. Bubble
18) The time complexity of heap sort is \qquad
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}(\log n)$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $O(n \log n)$
19) The complexity of selection sort is \qquad
A. O(n)
C. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathbf{O}\left(\mathbf{n}^{2}\right)$
D. $\mathrm{O}(\log \mathrm{n})$
20) Finding the location of a given item in a collection of items is called
A. Discovering
C. Searching
B. Finding
D. Mining
21) The worst case occurs in linear search algorithm when \qquad

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
A. Item is somewhere in the middle of the array
B. Item is not in the array at all
C. Item is the last element in the array
D. Item is the last element in the array or item is not there at all
22) If the number of records to be sorted is small, then \qquad sorting can be efficient.
A. Merge
C. Selection
B. Heap
D. Bubble
23) The complexity of sorting algorithm measures the \qquad as a function of the number n of items to be sorter.
A. Average time
C. Average-case complexity
B. Running time
D. Case-complexity
24) Which of the following is not a limitation of binary search algorithm?
A. Must use a sorted array
B. Sorted array is expensive when a lot of insertion and deletions are needed
C. There must be a mechanism to access middle element directly
D. Binary search algorithm is not efficient when the data elements more than 1500.
25) The Average case occurs in linear search algorithm
A. when item is somewhere in the middle of the array
B. when item is not the array at all
C. when item is the last element in the array
D. Item is the last element in the array or item is not there at all
26) Binary search algorithm cannot be applied to.......
A. Sorted linked list
C. Sorted linear array
B. Sorted binary trees
D. Pointer array
27) Complexity of linear search algorithm is.........
A. O(n)
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
B. $\mathrm{O}(\log \mathrm{n})$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
28) Sorting algorithm can be characterized as......
A. Simple algorithm which require the order of n 2 comparisons to sort n items.
B. Sophisticated algorithms that require the $\mathrm{O}(\mathrm{n} \log 2 \mathrm{n})$ comparisons to sort items.
C. Both of the above
D. None of the above
29) The complexity of bubble sort algorithm is
A. $\mathrm{O}(\mathrm{n})$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
B. $\mathrm{O}(\log n)$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
30) State True or False for internal sorting algorithms.
i) Internal sorting are applied when the entire collection if data to be sorted is small enough that the sorting can take place within main memory.
ii) The time required to read or write is considered to be significant in evaluating the performance of internal sorting.
A. i-True, ii-True
C. i-False, ii-True
B. i-True, ii-False
D. i-False, ii-False
31) The complexity of merge sort algorithm is.
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}(\log n)$
C. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
D. $O(n \log n)$
32) \qquad order is the best possible for array sorting algorithm which sorts n item.
A. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
C. $O(n+\log n)$
D. $\mathrm{O}(\log n)$
33) \qquad is the method used by card sorter?
A. Radix sort
C. Heap
B. Insertion
D. Quick
34) Sorting algorithm is frequently used when n is small where n is total number of elements.
A. Heap
C. Bubble
B. Insertion
D. Quick
35) Which of the following is not the required condition for binary search algorithm?
A. The list must be sorted
B. There should be the direct access to the middle element in any sub list
C. There must be mechanism to delete and/or insert elements in list.
D. Number values should only be present
36) Partition and exchange sort is \qquad .
A. Quick sort
C. Heap sort
B. Tree sort
D. Bubble sort

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

3. Stacks and queues

Position in Question Paper
Total Marks- 20
Q.1. b) 2-Marks.
Q.1. d) 2-Marks.
Q.1. g) 2-Marks.
Q.2. c) 4-Marks.
Q.3. b) 4-Marks.
Q.4. d) 4-Marks.
Q.5. a) 6-Marks.
Q.6. b) 6-Marks.

Descriptive Questions

1. Enlist stack operations condition.
2. Differentiate between stack and queue. (any two points)
3. Show the memory representation of stack using array with the help of a diagram.
4. Give any two applications of stack.
5. Convert the following infix expression to its postfix form using stack $A+B-C * D / E+F$.
6. Convert infix expression into prefix expression : $(\mathrm{A}+\mathrm{B}) *(\mathrm{C} / \mathrm{G})+\mathrm{F}$
7. Enlist queue operations condition.
8. Draw the diagram of queue to represent front and rear pointers of queue.
9. Sketch the diagram of circular queue.
10. List any 4 applications of queue.
11. Explain stack overflow and underflow conditions with example.

Convert the following infix expression to its prefix form using stack
12. $\mathrm{A}+\mathrm{B}-\mathrm{C} * \mathrm{D} / \mathrm{E}+\mathrm{F}$.

Show diagrammatically each step of conversion.
Convert following expression into postfix form. Give stepwise procedure.
$\mathrm{A}+\mathrm{B} \uparrow \mathrm{C} *(\mathrm{D} / \mathrm{E})-\mathrm{F} / \mathrm{G}$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

Show the effect of INSERT and DELETE operations on to the Linear queue of size 10. The Linear queue sequentially contains $10,20,30,40$, and 50 where 10 is at front
14. of the queue. Show diagrammatically the effect of-
1.INSERT(12)
2.INSERT(34)
3. DELETE
4. INSERT (56)

Describe queue full and queue empty operation conditions on linear queue with suitable diagrams.
16. Write algorithm to insert an element into a linear queue
17. Write a program in ' C ' to insert an element in a linear queue.
18. Draw and explain construction of circular queue.

Show the effect of PUSH and POP operation on to the stack of size 10. The stack contains $40,30,52,86,39,45,50$ with 50 being at top of the stack. Show diagrammatically the effect of :
(i) PUSH 59
(ii) PUSH 85
(iii) POP
(ii) (iv) POP
(v) PUSH 59
(vi) POP

Sketch the final structure of stack after performing the above said operations.
Evaluate the following postfix expression :
$5,6,2,+, *, 12,4, /$, - Show diagrammatically each step of evolution using stack.
Evaluate the following prefix expression :
-*+4325 show diagrammatically each step of evaluation using stack.
22. Write algorithm for performing push and pop operations on stack.

Define the term recursion. Write a program in C to display factorial of a entered number using recursion.

MCQ Questions

(Total number of Question=Marks*3=20*3=60)

1) \qquad form of access is used to add remove nodes from a stack.
A. LIFO
C. Both A and B
B. FIFO
D. None of these
2) New nodes are added to the \qquad of the queue.
A. Front
C. Middle
B. Back
D. Both A and B
3) What happens when you push a new node onto a stack?

A. The new node is placed at the front of the linked list

Prepared By: Prof.G.N.Handge(Computer Technology Dept.)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
B. The new node is placed at the back of the linked list
C. The new node is placed at the middle of the linked list
D. No Changes happens
4) Which of the following name does not relate to stacks?
A. FIFO lists
C. FILO list
B. LIFO lists
D. Push down lists
5) The term push and pop is related to
A. Array
C. Stacks
B. Lists
D. Trees
6) The elements are removal from a stack in \qquad order.
A. Reverse
C. Alternative
B. Hierarchical
D. Sequential
7) \qquad is the term used to insert an element into stack?
A. Push
C. Pop
B. Pull
D. Pump
8) \qquad is the term used to delete an element from the stack?
A. Push
C. Pop
B. Pull
D. Pump
9) A pointer variable which contains the location at the top element of the stack is called.....
A. Top
C. Final
B. Last
D. End
10) Before deletion condition into stack \qquad has to be checked.
A. Overflow
C. Maximum elements
B. Underflow
D. Existing elements
11) Before inserting into stack one must check the condition \qquad .
A. Overflow
C. Maximum elements
B. Underflow
D. Existing elements
12) When does Top value of stack change in insertion process?
A. Before insertion
C. At the time of insertion
B. After insertion
D. While checking overflow
13) Deletion in the linked stack takes place by deleting \qquad .
A. Node pointed by start process.
C. Beginning of the list
B. End of the list
D. Middle of the list
14) The condition \qquad indicate the queue is empty.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
A. Front=Null
C. Front=Rear
B. Null=Front
D. Rear=Null
15) The value of REAR is increased by 1 when \qquad .
A. An element is deleted in a queue
C. An element is added in a queue
B. An element is traversed in a queue
D. An element is merged in a queue
16) The term dequeue is the contraction of the name \qquad .
A. Double ended queue
C. Double headed queue
B. Double side queue
D. Double address queue
17) \qquad is a collection of elements such that each element has been assigned a processing priority.
A. Priority queue
C. Main queue
B. Procedure queue
D. Interrupt queue
18) Link fields hold pointers to the \qquad element in the linked representation of stack.
A. Neighboring
C. First
B. Last
D. Middle
19) Reversing a great deal of space for each stack in memory will \qquad .

A. Decrease the numbers of times overflow may occur

B. Increase the numbers of times overflow may occur
C. Increase the number of times underflow may occur
D. Increase the number of times underflow may occur.
20) Form of access is used to add and remove nodes from a queue.
A. LIFO, Last In First Out
C. Both a and b
B. FIFO, First In First Out
D. None of these
21) Entries in a stack are "ordered". What is the meaning of this statement?
A. A collection of stacks is sortable
B. Stack entries may be compared with the ' $<$ ' operation
C. The entries are stored in a linked list
D. There is a Sequential entry that is one by one
22) Which of the following is not the application of stack?
A. A parentheses balancing program
B. Tracking of local variables at run time
C. Compiler Syntax Analyzer
D. Data Transfer between two asynchronous process
23) What is the value of the postfix expression $6324+-*$?

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
A. 1
B. 40
C. 74
D. $\mathbf{- 1 8}$
24) The postfix form of the expression $(\mathrm{A}+\mathrm{B} . *(\mathrm{C} * \mathrm{D}-\mathrm{E}) * \mathrm{~F} / \mathrm{G}$ is?
A. $\mathrm{AB}+\mathrm{CD} * \mathrm{E}-\mathrm{FG} / * *$
B. $\mathrm{AB}+\mathrm{CD}^{*} \mathrm{E}-\mathrm{F}^{* *} \mathrm{G} /$
C. $\mathbf{A B}+\mathbf{C D} * \mathbf{E}-* \mathbf{F} \mathbf{G} /$
D. $\mathrm{AB}+\mathrm{CDE}^{*}-* \mathrm{~F} * \mathrm{G} /$
25) The data structure required to check whether an expression contains a balanced parenthesis is?
A. Stack
C. Array
B. Queue
D. Tree
26) What data structure would you mostly likely see in non-recursive implementation of a recursive algorithm?
A. Linked List
C. Queue
B. Stack
D. Tree
27) The postfix form of $A * B+C / D$ is?
A. $* \mathrm{AB} / \mathrm{CD}+$
B. $\mathbf{A B} * \mathbf{C D} /+$
C. $A * B C+/ D$
D. $\mathrm{ABCD}+$ /* *
28) Which data structure is needed to convert infix notation to postfix notation?
A. Branch
C. Queue
B. Tree
D. Stack
29) The prefix form of $\mathrm{A}-\mathrm{B} /\left(\mathrm{C} * \mathrm{D}^{\wedge} \mathrm{E}\right)$ is?
A. $-/ * \wedge \mathrm{ACBDE}$
B. $-\mathrm{ABCD}{ }^{* \wedge} \mathrm{DE}$
C. $-\mathbf{A} / \mathrm{B} * \mathbf{C}^{\wedge} \mathbf{D E}$
D. $-\mathrm{A} / \mathrm{BC}{ }^{* \wedge} \mathrm{DE}$
30) What is the result of the following operation?

Top (Push (S, X))
A. X
C. S
B. $\mathrm{X}+\mathrm{S}$
D. XS
31) The prefix form of an infix expression $(p+q)-(r * t)$ is?
A. $+\mathrm{pq}-{ }^{*} \mathrm{rt}$
B. $-+\mathrm{pqr} * \mathrm{t}$
C. $-\mathbf{+ p q}$ * rt
D. $-+*$ pqrt
32) Which data structure is used for implementing recursion?
A. Queue
C. Array
B. Stack
D. List
33) The result of evaluating the postfix expression $5,4,6,+, *, 4,9,3, /,+, *$ is?

Prepared By: Prof.G.N.Handge(Computer Technology Dept.)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
A. 600
B. 350
C. 650
D. 588
34) Consider the following operation performed on a stack of size 5.

Push(1);
Pop();
Push(2);
Push(3);
Pop();
Push(4);
Pop();
Pop();
Push(5);
After the completion of all operation, the number of elements present in stack is?
A. 1
B. 2
C. 3
D. 4
35) Which of the following is not an inherent application of stack?
A. Reversing a string
C. Implementation of recursion
B. Evaluation of postfix expression
D. Job scheduling
36) The type of expression in which operator succeeds its operands is?
A. Infix Expression
C. Postfix Expression
B. Prefix Expression
D. Both Prefix and Postfix Expressions
37) If the elements "A", "B", "C" and "D" are placed in a stack and are deleted one at a time, what is the order of removal?
A. ABCD
C. DCAB
B. DCBA
D. ABDC
38) A linear list of elements in which deletion can be done from one end (front) and insertion can take place only at the other end (rear) is known as \qquad .
A. Queue
C. Tree
B. Stack
D. Linked list
39) The data structure required for Breadth First Traversal on a graph is?
A. Stack
C. Queue
B. Array
D. Tree
40) A queue follows \qquad .

A. FIFO (First In First Out) principle

B. LIFO (Last In First Out) principle

Prepared By: Prof.G.N.Handge(Computer Technology Dept.)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
C. Ordered array
D. Linear tree
41) Circular Queue is also known as \qquad .
A. Ring Buffer
C. Rectangle Buffer
B. Square Buffer
D. Curve Buffer
42) If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time, in what order will they be removed?
A. $\mathbf{A B C D}$
C. DCAB
B. DCBA
D. ABDC
43) A data structure in which elements can be inserted or deleted at/from both ends but not in the middle is?
A. Queue
C. Dequeue
B. Circular queue
D. Priority queue
44) A normal queue, if implemented using an array of size MAX_SIZE, gets full when?
A. Rear = MAX_SIZE -1
C. Front $=$ rear +1
B. Front $=($ rear +1$) \bmod$ MAX_SIZE
D. Rear $=$ front
45) Queues serve major role in \qquad .
A. Simulation of recursion
B. Simulation of arbitrary linked list
C. Simulation of limited resource allocation
D. Simulation of heap sort
46) Which of the following is not the type of queue?
A. Ordinary queue
C. Circular queue
B. Single ended queue
D. Priority queue
47) Which of the following real world scenarios would you associate with a stack data structure?
A. Piling up of chairs one above the other
B. People standing in a line to be serviced at a counter
C. Offer services based on the priority of the customer
D. Tatkal Ticket Booking in IRCTC
48) What is the time complexity of pop() operation when the stack is implemented using an array?
A. $O(1)$
B. $\mathrm{O}(\mathrm{n})$
C. $\mathrm{O}(\log n)$
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
49) How many stacks are required for evaluation of prefix expression?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
A. One
C. Three
B. Two
D. Four
50) While evaluating a prefix expression, the string is read from?
A. Left to right
C. Center to right
B. Right to left
D. Center to left to right
51) What determines the order of evaluation of a prefix expression?
A. Precedence and associativity
C. Associativity only
B. Precedence only
D. Depends on the parser
52) Find the output of the following prefix expression *+2-2 1/-4 2+-5 31
A. 2
B. 12
C. 10
D. 4
53) If implemented using an array of size MAX_SIZE, gets full when \qquad _.
A. Front $=($ rear +1$) \bmod$ MAX_SIZE
C. Rear $=$ MAX_SIZE -1
B. Front $=$ rear +1
D. Rear $=$ front
54) Queues serve major role in
A. Simulation of recursion
C. Simulation of limited resource allocation
B. Simulation of arbitrary linked list
D. All of the mentioned
55) A circular queue is implemented using an array of size 10 . The array index starts with 0 , front is 6 , and rear is 9 . The insertion of next element takes place at the array index.
A. 0
B. 7
C. 9
D. 10
56) In linked list implementation of queue, if only front pointer is maintained, which of the following operation take worst case linear time?
A. Insertion
C. To empty a queue
B. Deletion
D. Both Insertion and To empty a queue
57) Let the following circular queue can accommodate maximum six elements with the following data. What will happen after ADD O operation takes place?

$$
\text { front }=2 \text { rear }=4
$$

queue $=$ \qquad ; L, M, N, \qquad ,
A. front $=2$ rear $=5$ queue $=\ldots ; L, M, N, O, \ldots$
B. front $=3$ rear $=5$ queue $=\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, \qquad

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
C. front $=3$ rear $=4$ queue $=$ \qquad ; L, M, N, O, \qquad
D. front $=2$ rear $=4$ queue $=\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, \qquad
58) Consider P, Q, R and S are the four elements in a queue. If we delete an element at a time then on which order they will get deleted?
A. PQRS
C. PSQR
B. SRQP
D. SRQP
59) A circular queue is implemented using an array of size 10 . The array index starts with 0 , front is 6 , and rear is 9 . The insertion of next element takes place at the array index of __.
A. 0
B. 7
C. 9
D. 10
60) In Queue, ENQUEUE means \qquad whereas DEQUEUE refers \qquad .
A. an insertion operation, a deletion operation.
B. End of the queue, defining a queue.
C. Both A and
B.
D. None of the above are true.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

4. Linked lists

Position in Question Paper

Q.2. b) 4-Marks.
Q.4. c) 4-Marks.
Q.4. e) 4-Marks.
Q.5. c) 6-Marks.
Q.6. c) 6-Marks.

Descriptive Questions

1. Describe any two terms from the following :
i) Node
ii) Null Pointer
iii) Empty List with respect to linear linked list with diagram.
2. Describe any two terms from the following :
i) Information Field/ Data field ii) Address iii)Next Pointer with respect to circular linked list with diagram.
3. Write algorithm to delete an intermediate node from a Singly Linked List.
4. Write a program to traverse a linked list.
5. Write an algorithm to delete a node from the beginning of a circular linked list.
6. Describe circular linked list with suitable diagram. Also state advantage of circular linked list over linear linked list.
7. Create a Singly Linked List using data fields $10,20,30,40,50$. Search a node 40 from the SLL and show procedure step-by-step with the help of diagram from start to end.
8. Describe procedure to delete an element from singly linked list using diagram.
9. Write an algorithm to insert an element at the beginning and at end of linked list.
10. Write an algorithm to count number of nodes in singly linked list.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Questions

(Total number of Question=Marks*3=16*3=48)

1) Linked lists are best suited \qquad .
A. For relatively permanent collections of data.
B. For the size of the structure and the data in the structure are constantly changing.
C. Data structure
D. For none of above situation
2) The operation of processing each element in the list is known as \qquad _.
A. Sorting
C. Inserting
B. Merging
D. Traversal
3) The situation when in a linked list START=NULL is \qquad _.
A. Underflow
C. Houseful
B. Overflow
D. Saturated
4) Each node in singly linked list has \qquad fields.
A. 2
B. 3
C. 1
D. 4
5) Which of the following is two way lists?
A. Grounded header list
B. Circular header list
C. Linked list with header and trailer nodes
D. List traversed in two directions
6) Which is the pointer associated with the availability list?
A. FIRST
C. TOP
B. AVAIL
D. REAR
7) Value of first linked list index is \qquad .
A. 0
B. 1
C. -1
D. 2
8) In linked lists there are no NULL links in
A. Single linked list
C. Circular linked list
B. Linear doubly linked list
D. Linked list
9) Each node in a linked list must contain at least \qquad .
A. Three fields
C. Four fields

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
B. Two fields
D. Five fields
10) The dummy header in linked list contains \qquad _.
A. First record of the actual data
B. Last record of the actual data
C. Pointer to the last record of the actual data
D. Middle record of the actual data
11) In a linked list the \qquad field contains the address of next element in the list.
A. Link field
C. Start field
B. Next element field
D. Info field
12) LLINK is the pointer pointing to the \qquad .
A. Successor node
C. Head node
B. Predecessor node
D. Last node
13) \qquad refers to a linear collection of data items.
A. List
C. Graph
B. Tree
D. Edge
14) A run list is \qquad _.
A. Small batches of records from a file
B. Number of elements having same value
C. Number of records
D. Number of files in external storage
15) A \qquad indicates the end of the list.
A. Guard
C. End pointer
B. Sentinel or NULL
D. Last pointer
16) A \qquad is a linear list in which insertions and deletions are made to from either end of the structure.
A. Circular queue
C. Priority
B. Random of queue
D. Dequeue
17) Indexing the \qquad element in the list is not possible in linked lists.
A. Middle
C. Last
B. First
D. Anywhere in between
18) A linear list in which the pointer points only to the successive node is \qquad _.
A. Singly linked list
C. Doubly linked list
B. Circular linked list
D. None of the above
19) \qquad may take place only when there is some minimum amount (or) no space left in free storage list.
Prepared By: Prof.G.N.Handge(Computer Technology Dept.)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
A. Memory management
C. Recycle bin
B. Garbage collection
D. Memory Allocation
20) A linear list in which the last node points to the first node is \qquad _.
A. Singly linked list
C. Doubly linked list
B. Circular linked list
D. None of the above
21) To insert a new node in linked list free node will be available in \qquad _.
A. Available list
C. Free node list
B. Avail list
D. Memory space list
22) A singly linked list is also called as \qquad .
A. Linked list
C. Two way chain
B. One way chain
D. Right link
23) A ___ list is a header list where the node points back to the header node.
A. Circular header
C. Two way header
B. Grounded header
D. One way header
24) A doubly linked list has \qquad pointers with each node.
A. 0
B. 1
C. 2
D. 3
25) Header linked lists are frequently used for maintaining \qquad in memory.
A. Polynomials
C. Trinomial
B. Binomial
D. Quadratic equation
26) The pointer that points to the first node in the list is \qquad .
A. FIRST
C. TOP
B. AVAIL
D. REAR
27) In a linked list, Deletion can be done as \qquad .
A. Beginning
C. Middle
B. End
D. All of the above
28) A doubly linked list is also called as \qquad .
A. Linked list
C. Two way chain
B. One way chain
D. Right link
29) The list that requires two pointer variables FIRST and LAST is called \qquad .
A. Circular list
C. One way list
B. Header list
D. Two way list
30) If the availability list is null, then the condition is said to be \qquad .
A. Nil block
C. Availability list overflow

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
B. Availability list underflow
D. Memory loss
31) The list which has its own pointer is called \qquad .
A. Pointer list
C. Free pool
B. Self-pointer
D. Own pointer
32) Which of the following is two way lists?
A. Grounded header list
B. Circular header list
C. Linked list with header and trailer nodes
D. None of the above
33) A \qquad is a header list where the last node contains the null pointer.
A. Grounded header list
C. Down header list
B. Bottom header list
D. Dropped header list
34) RLINK is the pointer pointing to the \qquad .
A. Successor node
C. Head node
B. Predecessor node
D. Last node
35) A \qquad is a header list where the last node points back to the header node.
A. Rounded header list
C. Common header list
B. Circular header list
D. Forward header list
36) In a linked list, insertion can be done as \qquad .
A. Beginning
C. Middle
B. End
D. All of the above
37) In a two-way lists each node is divided into \qquad parts.
A. 1
B. 2
C. 3
D. 4
38) The disadvantage in using a circular linked list is \qquad .

A. It is possible to get into infinite loop

B. Last node points to fist node.
C. Time consuming
D. Requires more memory space.
39) Which of the following conditions checks available free space in avail list?
A. Avail=Null
C. Avail=Max stack
B. Null=Avail
D. Avail=Top
40) A linear list in which each node has point to the predecessor and successors nodes is called \qquad .

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
A. Singly linked list
C. Doubly linked list
B. Circular linked list
D. Linear linked list
41) A linear collection of data elements where the linear node is given by means of pointer is called?
A. Linked list
C. Primitive list
B. Node list
D. Unordered list
42) Consider an implementation of unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operation can be implemented in O (1) time?
i) Insertion at the front of the linked list
ii) Insertion at the end of the linked list
iii) Deletion of the front node of the linked list
iv) Deletion of the last node of the linked list
A. I and II
C. I, II and III
B. I and III
D. I, II and IV
43) In linked list each node contains a minimum of two fields. One field is data field to store the data second field is?
A. Pointer to character
C. Pointer to node
B. Pointer to integer
D. Node
44) What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is initially pointing to the head of the list?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{n})$
C. $\boldsymbol{\theta}(\mathrm{n})$
D. $\theta(1)$
45) What would be the asymptotic time complexity to insert an element at the front of the linked list (head is known)?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{n})$
C. $\mathrm{O}(\mathrm{n} 2)$
D. $\mathrm{O}(\mathrm{n} 3)$
46) The concatenation of two lists can be performed in $\mathrm{O}(1)$ time. Which of the following variation of the linked list can be used?
A. Singly linked list
C. Circular doubly linked list
B. Doubly linked list
D. Array implementation of list
47) Consider the following definition in c programming language.
struct node
\{ int data;

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

```
    struct node * next;
}
```

typedef struct node NODE;
NODE *ptr;
Which of the following c code is used to create new node?
A. $\mathbf{p t r}=\left(\mathbf{N O D E}^{*}\right)$ malloc(sizeof(NODE) $)$;
B. $\operatorname{ptr}=\left(\mathrm{NODE}^{*}\right)$ malloc (NODE);
C. $\operatorname{ptr}=\left(\right.$ NODE $\left.^{*}\right)$ malloc $\left(\right.$ sizeof $\left.\left(\mathrm{NODE}^{*}\right)\right)$;
D. $\mathrm{ptr}=(\mathrm{NODE}) \mathrm{malloc}($ sizeof $(\mathrm{NODE}))$;
48) Linked lists are not suitable for the implementation of \qquad
A. Insertion sort
C. Polynomial manipulation
B. Radix sort
D. Binary search
49) Linked list is considered as an example of \qquad type of memory allocation.
A. Dynamic
C. Compile time
B. Static
D. Heap
50) Linked list data structure offers considerable saving in \qquad .
A. Computational Time
B. Space Utilization
C. Space Utilization and Computational Time
D. Speed Utilization
51) What does the following function do for a given Linked List with first node as head?

```
        void fun1(struct node* head)
```

\{
if(head == NULL)
return;
fun1(head->next);
printf("\%d ", head->data);
\}
A. Prints all nodes of linked lists
B. Prints all nodes of linked list in reverse order
C. Prints alternate nodes of Linked List
D. Prints alternate nodes in reverse order
52) Which of the following is not a disadvantage to the usage of array?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
A. Fixed size
C. There are chances of wastage of memory space if elements inserted in an array are lesser than the allocated size
C. Insertion based on position
D. Accessing elements at specified positions
53) Which of these is not an application of a linked list?
A. To implement file systems
C. To implement non-binary trees
B. For separate chaining in hash-tables
D. Random Access of elements
54) Which of the following is false about a doubly linked list?
A. We can navigate in both the directions
B. It requires more space than a singly linked list
C. The insertion and deletion of a node take a bit longer
D. Implementing a doubly linked list is easier than singly linked list
55) What is a memory efficient double linked list?

A. Each node has only one pointer to traverse the list back and forth

B. The list has breakpoints for faster traversal
D. An auxiliary singly linked list acts as a helper list to traverse through the doubly linked list
D. A doubly linked list that uses bitwise AND operator for storing addresses
56) What is the worst case time complexity of inserting a node in a doubly linked list?
A. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathrm{O}(\log n)$
C. O (n)
D. $\mathrm{O}(1)$
57) What differentiates a circular linked list from a normal linked list?
A. You cannot have the 'next' pointer point to null in a circular linked list
B. It is faster to traverse the circular linked list
C. You may or may not have the 'next' pointer to null in a circular linked list
D. Head node is known in circular linked list
58) What is the time complexity of searching for an element in a circular linked list?
A. $\mathrm{O}(\mathrm{n})$
B. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
C. $\mathrm{O}(1)$
D. $\mathrm{O}(\mathrm{n} 2)$
59) Which of the following application makes use of a circular linked list?
A. Undo operation in a text editor
C. Allocating CPU to resources
B. Recursive function calls
D. Implement Hash Tables
60) Which of the following is false about a circular linked list?
A. Every node has a successor

Prepared By: Prof.G.N.Handge(Computer Technology Dept.)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
B. Time complexity of inserting a new node at the head of the list is $\mathbf{O (1)}$
C. Time complexity for deleting the last node is $\mathrm{O}(\mathrm{n})$
D. We can traverse the whole circular linked list by starting from any point
61) What is the best case time complexity of deleting a node in a Singly Linked list?
A. O (n)
C. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathrm{O}(\mathrm{n} 2)$
D. O (1)
62) What is the time complexity to insert a node based on key in a priority queue?
A. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
B. $\mathrm{O}(\log n)$
C. O (n)
D. $\mathrm{O}(\mathrm{n} 2)$
63) What is not a disadvantage of priority scheduling in operating systems?
A. A low priority process might have to wait indefinitely for the CPU
B. If the system crashes, the low priority systems may be lost permanently
C. Interrupt handling
D. Indefinite blocking

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

5. Trees and graphs

Position in Question Paper

Total Marks- 16

Q.1. c) 2-Marks.

Q.1. e) 2-Marks.
Q.2. d) 4-Marks.
Q.3. d) 4-Marks.
Q.4. b) 4-Marks.
Q.5. b) 6-Marks.

Descriptive Questions

1.

Describe following terms w.r.to tree :
i) Leaf node
ii) Level of node

Describe any two types of trees from the following :
i) General Tree
ii) Binary Tree
iii) Binary Search Tree.

State the following terms:
i) Ancestor \quad ii) Height of Tree

Define given two types of graph and give example.
i) Directed graph
ii) Undirected graph
5. Give any two applications of Graph.
6. Differentiate between general tree and binary tree. (any four points)

Construct the binary search tree using following elements:
7. $35,15,40,7,10,100,28,82,53,25,3$.

Show diagrammatically each step of construction of BST.
Draw the tree structure of the following expressions :
(i) $(2 a+5 b)^{3} *(x-7 y)^{4}$
(ii) $(a-3 b) *(2 x-y)^{3}$
9. Differentiate between tree and graph w.r.t. any 4 parameters.
10. Explain Indegree and Outdegree of a graph with example.
11. Give adjacency list and adjacency matrix for given graph :

For the following directed graph :
i) Give adjacency matrix representation.
ii) Give adjacency list representation.
12.

From the following graph, complete the answers :
13.

(67)
(i) Indegree of node 21
(ii) Adjacent node of 19
(iii) Path of 31
(iv) Successor of node 67
14. From the given tree complete six answers :

1. Degree of tree
2. Degree of node 3
3. Level of node 5
4. Indegree of node 3
5. Outdegree of node 3
6. Height of tree

For given binary tree write in-order, pre-order and post-order traversal.
15.

Traverse the following tree by the in-order, pre-order and post-order me
16.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Questions

(Total number of Question=Marks*3=16*3=48)

1) Binary trees with threads are called as \qquad .
A. Threaded trees
C. Special trees
B. Pointer trees
D. Special pointer trees
2) In Binary trees nodes with no successor are called \qquad _.
A. End nodes
C. Final nodes
B. Terminal nodes
D. Last nodes
3) Trees are said \qquad if they are similar and have same contents at corresponding nodes.
A. Duplicate
C. Replica
B. Carbon copy
D. Copies
4) Every node N in a binary tree T except the root has a unique parent called the \qquad of N .
A. Antecedents
C. Forerunner
B. Predecessor
D. Precursor
5) Sequential representation of binary tree uses \qquad .
A. Array with pointers
C. Two dimensional arrays
B. Single linear array
D. Three dimensional arrays
6) TREE [1] = NULL indicates tree is \qquad .
A. Overflow
C. Empty
B. Underflow
D. Full
7) Linked representation of binary tree needs \qquad parallel arrays.
A. 4
B. 2
C. 3
D. 5
8) In a 2 -tree, nodes with 0 children are called \qquad .
A. Exterior node
C. Outer node
B. Outside node
D. External node
9) In a extended-binary tree nodes with 2 children are called \qquad .
A. Interior node
C. Internal node
B. Domestic node
D. Inner node
10) The operation of processing each element in the list is known as \qquad .
A. Sorting
C. Inserting
B. Merging
D. Traversal

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
11) While converting binary tree into extended binary tree, all the original nodes in binary tree are \qquad .
A. Internal nodes on extended tree
C. Vanished on extended tree
B. External nodes on extended tree
D. Intermediate nodes on extended tree
12) In a binary tree, certain null entries are replaced by special pointers which point to nodes higher in the tree for efficiency. These special pointers are called \qquad .
A. Leaf
C. Path
B. Branch
D. Thread
13) The in order traversal of tree will yield a sorted listing of elements of tree in \qquad .
A. Binary trees
C. Merging
B. Binary search trees
D. AVL Trees
14) A binary tree whose every node has either zero or two children is called \qquad .
A. Complete binary tree
C. Extended binary tree
B. Binary Search tree
D. E2 tree
15) The post order traversal of a binary tree is DEBFC A. Find out the pre order Traversal.
A. ABFCDE
C. ABDECF
B. ADBFEC
D. ABDCEF
16) In order traversing a tree resulted E A C K F H D B G; the preorder traversal would return.
A. FAEKCDBHG
C. EAFKHDCBG
B. FAEKCDHGB
D. FEAKDCHBG
17) \qquad in linked representation of Binary trees LEFT[k] contains the \qquad of at the node N , where k is the location.
A. Data
C. Right child address
B. Location and left child
D. Null value
18) Three standards ways of traversing a binary tree T with root R \qquad .
A. Prefix, infix, postfix
B. Pre-process, in-process, post-process
C. Pre-traversal, in-traversal, post-traversal
D. Pre-order, in-order, post-order
19) Which indicates pre-order traversal?
A. Left sub-tree, Right sub-tree and root
B. Right sub-tree, Left sub-tree and root
C. Root, Left sub-tree, Right sub-tree

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
D. Right sub-tree, root, Left sub-tree
20) A terminal node in a binary tree is called \qquad .
A. Root
C. Child
B. Leaf
D. Branch
21) Which indicates in-order traversal?
A. Left sub-tree, Right sub-tree and root
B. Right sub-tree, Left sub-tree and root
C. Root, Left sub-tree, Right sub-tree
D. Right sub-tree, root, Left sub-tree
22)The line drawn from a node N of tree T to a successor is called \qquad .
A. Path
C. Arrow
B. Edge
D. Route
23)In a binary tree a sequence of consecutive edges is called \qquad .
A. Rotate
C. Two-way
B. Connecting lines
D. Path
24)Which of the following indicates post-order traversal?
A. Left sub-tree, Right sub-tree and root
B. Right sub-tree, Left sub-tree and root
C. Root, Left sub-tree, Right sub-tree
D. Right sub-tree, root, Left sub-tree
25)The root R of the binary tree is assigned a level number of \qquad _.
A. 1
C. -1
B. 0
D. Null
26) If node N is a terminal node in a binary tree then its \qquad .
A. Right tree is empty
B. Left tree is empty
C. Both left \& right sub trees are empty
D. Root node is empty
27) In threaded binary tree \qquad points to higher nodes in tree.
A. Info
C. Threads
B. Root
D. Child
28)A graph is said to be \qquad if there is a path between any two of its nodes
A. Connected
C. Attached
B. Coupled
D. Allied

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
29) A graph is said to be \qquad if every node u in G is adjacent to every other node v in G .
A. Absolute
C. Inclusive
B. Entire
D. Complete
30) A graph is said to be \qquad if its edges are assigned data.
A. Tagged
C. Labeled
B. Marked
D. Sticked
31) Other name for directed graph is \qquad .
A. Direct graph
C. Dia-graph
B. Die-graph
D. Digraph
32) Graph G is \qquad if for any pair u, v of nodes in G there is a path from u to v or path from v to u .
A. Laterally connected
C. Un-literally connected
B. Widely Connected
D. Literally connected
33) A connected graph T without any cycles is called \qquad .
A. Free graph
C. Non cycle graph
B. No cycle graph
D. Circular graph
34) A connected graph T without any cycles is called a \qquad _.
A. A tree graph
C. A tree d
B. Free tree
D. All of the above
35) In a graph if $E=(u, v)$ means \qquad .
A. u is adjacent to v but v is not adjacent to u
B. e begins at u and ends at v
C. u is processor and v is successor
D. Both b and c
36) Which of the following statements for a simple graph is correct?

A. Every path is a trail

B. Every trail is a path
C. Every trail is a path as well as every path is a trail
D. Path and trail have no relation
37) In the given graph identify the cut vertices.

A. B and E
C. A and E
B. C and D
D. C and B
38) For the given graph (G), which of the following statements is true?

A. G is a complete graph
B. G is not a connected graph
C. The vertex connectivity of the graph is 2
D. The edge connectivity of the graph is 1
39) What is the number of edges present in a complete graph having n vertices?
A. $(\mathrm{n} *(\mathrm{n}+1)) / 2$
C. n
B. $\left(\mathbf{n}^{*}(\mathbf{n}-1)\right) / \mathbf{2}$
D. Information given is insufficient
40) In a simple graph, the number of edges is equal to twice the sum of the degrees of the vertices.
A. True

B. False

41) Which of the following properties does a simple graph not hold?
A. Must be connected
C. Must have no loops or multiple edges
B. Must be un-weighted
D. Must have no multiple edges

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
42) Which of the following is true?
A. A graph may contain no edges and many vertices
B. A graph may contain many edges and no vertices
C. A graph may contain no edges and no vertices
D. A graph may contain no vertices and many edges
43) For a given graph G having v vertices and e edges which is connected and has no cycles, which of the following statements is true?
A. $v=e$
B. $v=e+1$
C. $v+1=\mathrm{e}$
D. $v=e-1$
44) A graph with all vertices having equal degree is known as a \qquad
A. Multi Graph
C. Simple Graph
B. Regular Graph
D. Complete Graph
45) Which of the following ways can be used to represent a graph?
A. Adjacency List and Adjacency Matrix
B. Incidence Matrix
C. Adjacency List, Adjacency Matrix as well as Incidence Matrix
D. No way to represent
46) How many children does a binary tree have?
A. 2
C. 0 or 1 or 2
B. any number of children
D. 0 or 1
47) What is/are the disadvantages of implementing tree using normal arrays?
A. difficulty in knowing children nodes of a node
B. difficult in finding the parent of a node
C. have to know the maximum number of nodes possible before creation of trees
D. difficult to implement
48) Advantages of linked list representation of binary trees over arrays?
A. dynamic size
B. ease of insertion/deletion
C. ease in randomly accessing a node
D. both dynamic size and ease in insertion/deletion
49) Which of the following traversing algorithm is not used to traverse in a tree?
A. Post order
C. Post order
B. Pre order
D. Randomized
50) The following given tree is an example for?

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

A. Binary tree
C. Fibonacci tree
B. Binary search tree
D. AVL tree
51) A binary tree is a rooted tree but not an ordered tree.
A. True
B. False
52) If binary trees are represented in arrays, what formula can be used to locate a left child, if the node has an index i?
A. $\mathbf{2 i}+1$
B. $2 \mathrm{i}+2$
C. 2 i
D. 4 i
53) Which of the following properties are obeyed by all three tree - traversals?
A. Left sub-trees are visited before right sub-trees
B. Right sub-trees are visited before left sub-trees
C. Root node is visited before left sub-tree
D. Root node is visited before right sub-tree
54) For the tree below, write the pre-order traversal.

А. 2, 7, 2, 6, 5, 11, 5, 9, 4
C. $2,5,11,6,7,4,9,5,2$
B. $2,7,5,2,6,9,5,11,4$
D. $2,7,5,6,11,2,5,4,9$
55) For the tree below, write the post-order traversal.

A. $2,7,2,6,5,11,5,9,4$
B. $2,7,5,2,6,9,5,11,4$
C. $2,5,11,6,7,4,9,5,2$
D. $2,7,5,6,11,2,5,4,9$
56) What is the time complexity of pre-order traversal in the iterative fashion?
A. $\mathrm{O}(1)$
C. $\mathrm{O}(\log n)$
B. O(n)
D. $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
57) To obtain a prefix expression, which of the tree traversals is used?
A. Level-order traversal
C. Post-order traversal
B. Pre-order traversal
D. In-order traversal
58) In post-order traversal of binary tree right sub-tree is traversed before visiting root.
A. True
B. False
59) A full binary tree can be generated using \qquad
A. post-order and pre-order traversal
B. pre-order traversal
C. post-order traversal
D. in-order traversal
60) For a binary tree the first node visited in in-order and post-order traversal is same.
A. True
B. False

