Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Subject: - Basic Mathematics

(22103)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

Chapter No.	Name of Chapter	Marks with Option
1	Logarithm	02
2	Determinants	06
3	Matrices	14
4	Partial Fractions	08
5	Trigonometric ratios of Compound, Allied, Multiple and SubMultiple angles	14
6	Factorization and De-factorization Formulae	08
7	Inverse Trigonometric Ratios	08
8	Straight Line	12
9	Mensuration	10
10	Measures of Dispersion	20
	Total Marks: -	102

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

BOARD THEORY

PAPER PATTERN

FOR BMS (22103)

Q.1		Attempt any FIVE $\quad \mathbf{5 * 2 = 1 0}$
	a)	Logarithm
	b)	Determinants
	c)	Trigonometric Ratios of Compound, Allied, Multiple and Sub- Multiple angles.
	e)	Mensuration
	f)	Measures of Dispersion
Q.2	Measures of Dispersion	Attempt any THREE
	a)	Matrices

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

	b)	Partial Fractions
	c)	Determinants
	d)	Measures of Dispersion
Q. 3		Attempt any THREE 3*4=12
	a)	Trigonometric Ratios of Compound, Allied, Multiple and Sub- Multiple angles
	b)	Trigonometric Ratios of Compound, Allied, Multiple and Sub- Multiple angles
	c)	Factorization and De-factorization Formulae
	d)	Inverse Trigonometric Ratios
Q. 4		Attempt any THREE 3*4=12
	a)	Matrices
	b)	Partial Fractions
	c)	Factorization and De-factorization Formulae
	d)	Trigonometric Ratios of Compound, Allied, Multiple and Sub- Multiple angles
	e)	Inverse Trigonometric Ratios
Q. 5		Attempt any TWO 2*6=12
	a)	i) Straight Line
		ii) Straight Line

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

	b)	i) Straight Line
		ii) Straight Line
	c)	i) Mensuration
Q.6		ii) Mensuration
	a)	Measures of Dispersion
	b)	i) Measures of Dispersion
	c)	Matrices Measures of Dispersion

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

CLASS TEST - I

PAPER PATTERN

COURSE: - Basic Mathematics (22103)
PROGRAMME: - All
Syllabus: -

Unit No.	Name of the Unit	Course Outcome (CO)
1	Logarithm	CO-103.01
	Determinants	
	Matrices	
2	Trigonometric Ratios of Compound, Allied, Multiple and Sub-Multiple angles	CO-103.02

Q. 1	Attempt any FOUR 4*2=8Marks	Course Outcome (CO)
a)	Determinants	CO-103.01
b)	Determinants	CO-103.01
c)	Matrices	CO-103.01
d)	Partial Fractions	CO-103.01
e)	Logarithm	CO-103.01
f)	Trigonometric Ratios of Compound, Allied, Multiple and SubMultiple angles	CO-103.02
Q. 2	Attempt any THREE 3*4=12 Marks	
a)	Partial Fractions	CO-103.01

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

b)	Determinants	CO-103.01
c)	Matrices	CO-103.01
d)	Trigonometric Ratios of Compound, Allied, Multiple and Sub- Multiple angles	CO-103.02

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

CLASS TEST - II

PAPER PATTERN

COURSE: - Basic Mathematics (22103)
PROGRAMME: - All
Syllabus: -

Unit No.	Name of the Unit	Course Outcome (CO)
	Trigonometric Ratios of Compound, Allied, Multiple and Sub-Multiple angles	CO-103.02
	Factorization and De-factorization Formulae	
	Inverse Trigonometric Ratios	CO-103.03
3	Straight Line	CO-103.04
4	Mensuration	CO-103.05
5	Measures of Dispersion	

Q.1	Attempt any FOUR	Course Outcome $\mathbf{C O})$
a)	Factorization and De-factorization Formulae	CO-103.02
$\mathbf{b)}$	Straight Line	$\mathrm{CO}-103.03$
$\mathbf{c)}$	Mensuration	$\mathrm{CO}-103.04$
$\mathbf{d)}$	Mensuration	$\mathrm{CO}-103.04$
$\mathbf{e)}$	Measures of Dispersion	$\mathrm{CO}-103.05$
$\mathbf{f)}$	Measures of Dispersion	$\mathrm{CO}-103.05$
Q.2	Attempt any THREE	
a)	Inverse Trigonometric Ratios	$\mathrm{CO}-103.02$
b)	Straight Line	$\mathrm{CO}-103.03$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

$\mathbf{c)}$	Mensuration	$\mathrm{CO}-103.04$
$\mathbf{d)}$	Measures of Dispersion	$\mathrm{CO}-103.05$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

COURSE OUTCOME

(CO)

COURSE: - Basic Mathematics (22103)
PROGRAMME: - All

CO. NO.	Course Outcome
CO-103.01	Apply the concept of algebra to solve engineering related problems.
CO-103.02	Utilize basic concepts of trigonometry to solve elementary engineering problems.
CO-103.03	Solve basic engineering problems under given conditions of straight line.
CO-103.04	Solve the problems based on measurement of regular closed figures and regular solids.
CO- 103.05	Use basic concepts of statistics to solve engineering related problems.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

1. Logarithm

Position in Question Paper

Q.1. a) 2-Marks.

Descriptive Question

Definition:

The logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x.
The logarithm of x to base b is denoted as $\log _{b}(x)$, or without parentheses, $\log _{b} x$, or even without the explicit base, $\log x$, when no confusion is possible, or when the base does not matter.
$\log _{a} y=x$ if and only if $a^{x}=y$ and $\mathrm{y}>0, a>0$ and $\mathrm{a} \neq 1$
For example, $\log _{2} 64=6$, as $2^{6}=64$
Basic Properties of Logarithm
i) $\quad \log _{b} 1=0 ; \log _{2} 1=0$
ii) $\quad \log _{m} m=1 ; \log _{n} n=1$

Laws of Logarithm

	Formula	Example
i) Product	$\log _{b} x y$ $=\log _{b} x+\log _{b} y$	$\log _{3} 243=\log _{3} 9+\log _{3} 27$
ii) Quotient	$\log _{b} \frac{x}{y}$ $=\log _{b} x-\log _{b} y$	$\log _{3} \frac{64}{4}=\log _{3} 64-\log _{3} 4$ Corollary $\log _{a}\left(\frac{1}{n}\right)=-\log _{a} n$
iii) Power	$\log _{b} x^{p}=p \log _{b} x$	$\log _{2} 64=\log _{2} 2^{6}=6 \log _{2} 2$ $=6$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.

| $\log _{b} \sqrt[p]{x}=\frac{\log _{b} x}{p}$ | $\log _{10} \sqrt{1000}$
 $=\frac{1}{2} \log _{10} 1000$

 |
| :--- | :--- | :--- | :--- |

Important

i) $\log _{a} a^{x}=x$
ii) $\log _{10} 10^{x}=x$
iii) $\log _{e} e^{x}=x$
iv) $a^{\log _{a} x}=x$
v) $10^{\log _{10} x}=x$
vi) $e^{\log _{e} x}=x$
Q.1) Evaluate
a) $\log _{3} 81 \quad \mathbf{W}-\mathbf{1 7}, \mathbf{W}-18$
b) $\log _{10} 0.01$
c) $\log _{8}\left(\frac{1}{8}\right)$
d) $\log _{2} \sqrt{2}$
e) $\log _{48}(4 \sqrt{3})$
f) $\log _{81} 27$
g) $\log _{2 \sqrt{3}} 12$
Q.2) Evaluate
a) $3^{-2 \log _{3} 5}$
b) $4^{2 \log _{2} 3}$
c) $12^{\log _{2 \sqrt{3}} 5}$
d) $(625)^{\log _{5} 7}$
Q.3) Find the value of
a) $\log \left(\frac{225}{32}\right)-\log \left(\frac{25}{81}\right)+\log \left(\frac{64}{729}\right)$
b) $\log \left(\frac{2}{3}\right)+\log \left(\frac{4}{5}\right)-\log \left(\frac{8}{15}\right)$ S-18
c) $\log \left(\frac{9}{14}\right)-\log \left(\frac{15}{16}\right)+\log \left(\frac{35}{24}\right)$
d) $2 \log \left(\frac{3}{4}\right)+\log \left(13 \frac{1}{3}\right)-\log \left(7 \frac{1}{2}\right)$
e) $\log \left(\frac{145}{8}\right)-3 \log \frac{3}{2}+\log \left(\frac{54}{29}\right)$
Q.4) Solve for x
a) $\log _{3}(x+6)=2$

W-19
b) $\log (x+3)+\log (x-3)=\log 27$
c) $\log _{x} 4+\log _{x} 16+\log _{x} 64=12$
d) $\log _{32} x=-\frac{3}{5}$
e) $\frac{(4 \log 3)(\log x)}{\log 9}=\log 27$
f) $\log _{49}\left[\log _{2}(5 x-2)\right]=\frac{1}{2}$

Change of Base Rule

i) $\log _{b} x=\frac{\log _{a} x}{\log _{a} b}, \mathrm{x} \neq 1, \mathrm{~b} \neq 1, \mathrm{x}$ and b are positive real numbers
ii)

$$
\log _{b} x=\frac{\log x}{\log b}
$$

iii) $\log _{b} a=\frac{1}{\log _{a} b}$ OR $\log _{b} a X \log _{a} b=1$

Corollary

$\log _{a^{n}} x^{n}=\log _{a} x$
Q.5) Solve for x
a) $\log _{2} x-\log _{4} x=2$
b) $\log _{2} x+\log _{4} x=2$
c) If $\log _{2} x+\log _{8} x+\log _{16} x=\frac{95}{12}$, then find x

Q.6) Prove the following

a) $\frac{1}{\log _{3} 6}+\frac{1}{\log _{8} 6}+\frac{1}{\log _{9} 6}=3$ S-19
b) $\log \left(\frac{p^{2}}{q r}\right)+\log \left(\frac{q^{2}}{r p}\right)+\log \left(\frac{r^{2}}{p q}\right)=0$
c) $\log \left(\log x^{7}\right)-\log \left(\log x^{3}\right)=\log \left(\frac{7}{3}\right)$
d) $\log (1+2+3)=\log 1+\log 2+\log 3$
e) $\frac{1}{\log _{b} a}+\frac{1}{\log _{c} a}=\frac{1}{\log _{b c} a}$
f) $\frac{1}{\log _{b c} a+1}+\frac{1}{\log _{a c} b+1}+\frac{1}{\log _{a b} c+1}=2$
g) $7 \log \left(\frac{16}{15}\right)-5 \log \left(\frac{24}{25}\right)+3 \log \left(\frac{81}{80}\right)=\log 2$
h) $\frac{1}{\log _{a} a b c}+\frac{1}{\log _{b} a b c}+\frac{1}{\log _{c} a b c}=1$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.7) Simplify the following
a) $\frac{1}{\log _{5} 10}+\frac{1}{\log _{20} 10}$
b) $2^{3 \log _{2} 3}+12^{\log _{2 \sqrt{3}} 10}$
c) $\frac{1}{\log _{8} 2}+\frac{1}{\log _{4} 2}$

MCQ Question

(Total number of Question=Marks*3=2*3=6)
Note: Correct answer is marked with bold.

1. The logarithms having base 10 are called
a) Pure logarithms
c) Natural logarithms
b) Common logarithms
d) Infinite logarithms
2. The logarithms having base e are called
a) Pure logarithms
c) Natural logarithms
b) Common logarithms
d) Infinite logarithms
3. $\log _{a}\left(\frac{m}{n}\right)$ equals to
a) $\log _{a} m+\log _{a} n$
b) $\log _{a} m-\log _{a} n$
c) $n \log _{a} m$
d) $\frac{\log _{a} m}{\log _{a} n}$
4. $\quad \log _{a}(m X n)$ equals to
a) $\log _{a} m+\log _{a} n$
b) $\log _{a} m-\log _{a} n$
c) $n \log _{a} m$
d) $\frac{\log _{a} m}{\log _{a} n}$
5. If $a^{x}=y$, then
a) $a=\log _{x} y$
b) $x=\log _{y} a$
c) $x=\log _{a} y$
d) $a=\log _{y} x$
6. $10^{-3}=0.001$ can be written in the form of logarithm as
a) $\quad \log 1=-3$
b) $\quad \log 0.001=3$
c) $\log 3=-0.001$
d) $\log 0.001=-3$
7. The types of logarithms are
a) 4
b) 3
c) 2
d) 5
8. $10^{2}=100$ can be written in the form of logarithm as
a)
$\log 100=2$
b) $\quad \log 2=100$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
c) $\quad \log 2^{100}$
d) $\frac{\log 2}{\log 100}$
9. The relation $y=\log _{z} x$ implies
a) $\quad x^{y}=z$
b) $\quad \mathbf{z}^{\mathbf{y}}=\mathbf{x}$
c) $\quad x^{z}=y$
d) $\quad y^{z}=x$
10. Which of the following statements is not correct?
a)
$\log _{10} 10=1$
c) $\quad \log _{10} 1=0$
b) $\quad \log (2+3)=\log (2 X 3)$
d) $\quad \log (1+2+3)=\log 1+\log 2+\log 3$
11. $\frac{\log \sqrt{8}}{\log 8}$ is equal to
a)
$\frac{1}{6}$
c) $\frac{1}{2}$
b)
$\frac{1}{4}$
d) $\frac{1}{8}$
12. The value of $\frac{1}{\log _{3} 60}+\frac{1}{\log _{4} 60}+\frac{1}{\log _{5} 60}$ is
a) 0
c)
5
b) $\quad 1$
d) 60
13. If $\log _{x}\left(\frac{9}{16}\right)=\frac{-1}{2}$, then x is equal to
a)
$\frac{-3}{4}$
b) $\frac{3}{4}$
c) $\frac{81}{256}$
d) $\frac{\mathbf{2 5 6}}{\mathbf{8 1}}$
14. The value of $\log _{2} 16$ is
a) $\frac{1}{8}$
b) 4
c) 8
d) 16
15. The value of $\log _{5} \frac{(125)(635)}{25}$ is equal to
a)
725
c) 3125
b)
5
d) 6
16. Determine the value of $\log _{3 \sqrt{2}}\left(\frac{1}{18}\right)$ is
a)
2
b) $\quad \mathbf{- 2}$
c)
$\sqrt{2}$
d) $\sqrt{3}$
17. The value of $\log _{10}(0.0001)$ is
a) $\frac{1}{4}$
b) $\frac{-1}{4}$
c) $\quad-4$
d) 4

Prepared By: Prof.V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
18. What is the value of $\left[\log _{10}\left(5 \log _{10} 100\right)\right]^{2}$
a) $\quad 1$
b) 2
c) $\quad 10$
d) 25
19. If $\log _{10000} x=\frac{-1}{4}$, then the value of x is
a) $\frac{1}{10}$
c) $\frac{1}{1000}$
b)
$\frac{1}{100}$
d) $\frac{1}{10000}$
20. The value of $\frac{6 \log _{10} 1000}{3 \log _{10} 100}$
a) 0
b) $\quad 1$
c) 2
d) 3
21. If $\log _{2}\left[\log _{3}\left(\log _{2} x\right)\right]=1$, then x is equal to
a)
0
c) 128
b) $\quad 12$
d) 512
22. What is the value of the following expression?
$\log \left(\frac{9}{14}\right)-\log \left(\frac{15}{16}\right)+\log \left(\frac{35}{24}\right)$
a) 0
b) 1
c) 2
d) 3
23. $2 \log _{10} 5+\log _{10} 8-\frac{1}{4} \log _{10} 4=$?
a) 2
b) 4
c) $2-2 \log _{10} 2$
d) $4-4 \log _{10} 2$
24. If $\log _{10} 125+\log _{10} 8=x$, then x is equal to
a) $\frac{1}{3}$
b) 0.064
c) $\quad-3$
d) 3
25. If $\log _{5}\left(x^{2}+x\right)=\log _{5}(x+1)=2$, then the value of x is
a) 5
c)
25
b) $\quad 10$
d) 32
26. $\log \left(\frac{a^{2}}{b c}\right)+\log \left(\frac{b^{2}}{a c}\right)+\log \left(\frac{c^{2}}{a b}\right)$ is equal to
a) $\quad 0$
b) 1
c) 2
d) Abc
27. $\frac{1}{\log _{a} b} X \frac{1}{\log _{b} c} X \frac{1}{\log _{c} a}$ is equal to
a) $\quad a+b+c$
b) $a b c$
c) 0
d) 1

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
28.
$\frac{1}{\left(\log _{a} b c\right)+1}+\frac{1}{\left(\log _{b} c a\right)+1}+\frac{1}{\left(\log _{c} a b\right)+1}$
a) $\quad 1$
b) $\frac{3}{2}$
c) 2
d) 3
29. If $\log x-5 \log 3=-2$, then x equals
a) 0.8
b) 0.81
c) $\quad 1.25$
d) 2.43
30. If $\log _{3} x+\log _{9} x^{2}+\log _{27} x^{3}=9$, then x equals to
a) 3
c) 27
b) 9
d) None of these
31. The value of $\log _{5}\left(\frac{1}{125}\right)$ is
a) $\frac{-1}{3}$
b) -3
c) $\frac{1}{3}$
d) 3
32. If $\log _{x} 4=\frac{1}{4}$, the x is equal to
a) $\mathbf{2 5 6}$
b) 128
c) 64
d) 16
33. The value of $\log _{2}\left(\log _{5} 625\right)$ is
a) 10
b) $\quad 2$
c) 4
d) 5
34. The value of $\log _{343} 7$ is
a) $\frac{-1}{3}$
b) $\quad-3$
c) $\frac{1}{3}$
d) 3
35. If $\log _{32} x=0.8$, then x equals to
a) $\quad 12.8$
b) 10
c) 16
d) 25.6

Prepared By: Prof.V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
36. $36^{\left(\log _{6} 4\right)}$
a) 4
b) 8
c) 16
d) 64

2. Determinant

Q.1. b) 2-Marks.
Q.2. c) 4-Marks.

Descriptive Question

Definition:

An expression expressed in equal number of rows and columns and put between two vertical lines is called as determinant. Determinants are denoted by D or Δ (delta).
Determinant of order 2X2
D or $\Delta=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=$ ad-bc
Determinant of order 3X3
D or $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
D or $\Delta=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
Q.1) Evaluate or Expand or Find the value of determinant
a)

$$
\left|\begin{array}{ccc}
3 & -5 & -1 \tag{W-12}\\
1 & 3 & 5 \\
-5 & 1 & 3
\end{array}\right|
$$

b)

$$
\left|\begin{array}{lll}
2 & 3 & 5 \tag{W-14}\\
1 & 4 & 2 \\
3 & 1 & 1
\end{array}\right|
$$

Q.2) Solve or Find ' x ' if
a)

$$
\left|\begin{array}{ccc}
4 & 3 & 9 \\
3 & -2 & 7 \\
11 & 4 & \mathrm{x}
\end{array}\right|=0 \quad \text { (S-15, W-15, S-19) }
$$

b) $\left|\begin{array}{llr}1 & \mathrm{x} & \mathrm{x}^{2} \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right|=0$
c)

$$
\left|\begin{array}{lll}
4 & 3 & 9 \tag{S-16}\\
3 & 2 & 7 \\
1 & 4 & x
\end{array}\right|=0
$$

d)

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
3 & x & 3 \\
1 & x & 2
\end{array}\right|=0
$$

e)

$$
\left|\begin{array}{ccc}
x & 0 & 0 \\
3 & -2 & 1 \\
-2 & -4 & 1
\end{array}\right|=0
$$

Q.3)

Find K if $\left|\begin{array}{ccc}2 & -k & 7 \\ 3 & -4 & 13 \\ 8 & -11 & 33\end{array}\right|=0$
Q.4)

Find the value of P if $\left|\begin{array}{ccc}P & 4 & -4 \\ 3 & -2 & 1 \\ -2 & -4 & 1\end{array}\right|=0 \quad(\mathbf{W}-17, S-18, S-19)$

Applications of Determinant

I) Cramer's Rule
Q.5) Solve the following equations by Cramer's Rule
a) $\quad \mathrm{x}+\mathrm{y}+\mathrm{z}=3 ; \mathrm{x}-\mathrm{y}+\mathrm{z}=1$; $\mathrm{x}+\mathrm{y}-2 \mathrm{z}=0$.
b) $\quad \mathrm{x}-\mathrm{y}-2 \mathrm{z}=1$; $\quad 2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=4 ; \quad 3 \mathrm{x}-2 \mathrm{y}-6 \mathrm{z}=5$. \quad (W-17)
c) $3 \mathrm{x}+3 \mathrm{y}-\mathrm{z}=11 ; 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}=9$; $4 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=25$. (W-17)
d) $\quad 3 x+y+z=4 ; \quad 2 x-3 y+z=7 ; \quad x+y+3 z=6$.
e) $\quad \mathrm{x}+\mathrm{y}+\mathrm{z}=2 ; \quad \mathrm{y}+\mathrm{z}=1 ; \quad \mathrm{x}+\mathrm{z}=3$. $\quad(\mathbf{W}-\mathbf{1 8})$
f) $\quad x+y=0 ; y+z=2 ; x+z=4$. $\quad(\mathbf{W}-18)$
g) $\quad \mathrm{x}+\mathrm{z}=4 ; \quad \mathrm{y}+\mathrm{z}=2 ; \quad \mathrm{x}+\mathrm{y}=0$.
Q.6) The voltages in an electric circuit are related by following questions. $V_{1}+V_{2}+V_{3}=9 ; \quad V_{1}-V_{2}+V_{3}=3 ; \quad V_{1}+V_{2}-V_{3}=1$. Find V_{1}, V_{2} and V_{3}. (S-18)
Q.7) Following equations are obtained as a result of an experiment.
$P_{1}+P_{2}-P_{3}=0 ; \quad 2 P_{1}+P_{2}+P_{3}=26 ; \quad P_{2}+P_{3}=14$.
Find P_{1}, P_{2} and P_{3} by using Cramer's Rule. (S.Q.P)
II) Area of triangle
Q.8) Find the area of the triangle whose vertices are
a)
$(4,7),(1,3)$ and $(5,1)$
(S.Q.P)

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
b) $\quad(3,1),(-1,3)$ and $(-3,-2)$ (S-18)
c) $(4,3),(1,4)$ and $(2,3) \quad(\mathbf{W}-18)$
d) $\quad(-3,1),(1,-3)$ and $(2,3)$ (W-18)

Collinearity of Points

Q.9) Show that the points $(8,1),(3,-4)$ and $(2,-5)$ are collinear using determinant. ($\mathbf{W}-17$)
Q.10) Show that the points $(2,3),(-1,0)$ and $(4,5)$ are collinear using determinant.
Q.11) Show that the points $(3,1),(-1,3)$ and $(-3,2)$ are collinear using determinant.

MCQ Question

(Total number of Question=Marks*3=6*3=18)
Note: Correct answer is marked with bold

1. If $\left|\begin{array}{cc}2 x & -1 \\ 4 & 2\end{array}\right|=\left|\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right|$, then x is
a) 3
b) $\frac{2}{3}$
c) $\frac{3}{2}$
d) $\frac{-1}{4}$
2. The value of $\left|\begin{array}{ccc}6 & 0 & -1 \\ 2 & 1 & 4 \\ 1 & 1 & 3\end{array}\right|$ is
a) $\quad-7$
b) 7
c) 8
d) 10
3.

Evaluate the determinant $\left|\begin{array}{ccc}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
a) $\mathbf{4 6}$
c) 23
b) -46
d) None of these
4. Find the values of x such that the points $(0,2),(1, x)$ and $(3,1)$ are collinear
a) $\frac{5}{3}$
c) $\frac{3}{5}$
b) $\frac{-5}{3}$
d) None of these
5. Find the area of the triangle with vertices $P(4,5), Q(4,-2), R(-6,2)$
a) 21 sq. units
b) $\mathbf{3 5}$ sq. units
c) 30 sq. units
d) 40 sq. units
6. Find the area of the triangle with vertices $P(-2,6), Q(3,-6), R(1,5)$
a) 30 sq. units
b) 35 sq. units
c) 40 sq. units
d) $\mathbf{1 5 . 5}$ sq. units
7. If $\left|\begin{array}{ll}3 x & 7 \\ -2 & 4\end{array}\right|=\left|\begin{array}{ll}8 & 7 \\ 6 & 4\end{array}\right|$, then the value of x is
a) $\quad \mathbf{- 2}$
b) 2
c) 5
d) 7
8. Find the area of the triangle with vertices $(2,7),(1,1),(10,8)$
a) 47 sq. units
b) 47.5 sq. units
c) 23.5 sq. units
d) 30 sq. units
9. Find the value of y by Cramer's rule
$x-4 y=-9$
$-x+5 y=11$
a) -1
c) 1
b) 2
d) None of these
10. Find the value of D_{z} if
$2 x-y+6 z=10$
$-3 x+4 y-5 z=11$
$8 x-7 y-9 z=12$
a) 16
b) 17
c) 18
d) 19
11. The rule which provides method of solving the determinants is classified as
a) Cramer's rule
c) Solving rule
b) Determinant rule
d) Thumb rule
12. Apply Cramer's rule to solve the following equations.
$3 x+y+2 z=3$
$2 x-3 y-z=-3$
$x+2 y+z=4$
a) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{y}=-1$
b) $\mathrm{x}=2, \mathrm{y}=1, \mathrm{y}=-1$
c) $x=2, y=-1, y=1$
d) $\mathrm{x}=1, \mathrm{y}=-1, \mathrm{y}=2$
13. Apply Cramer's rule to solve the following equations.

$$
\begin{aligned}
& x+3 y+6 z=2 \\
& 3 x-y+z=9 \\
& x-4 y+2 z=7
\end{aligned}
$$

a) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{y}=-1$
b) $x=2, y=-1, y=-0.5$
c) $x=1, y=2, y=-0.5$
d) $\mathrm{x}=2, \mathrm{y}=2, \mathrm{y}=-1$
14. Apply Cramer's rule to solve the following equations.

$$
\begin{aligned}
& x+y+z=3 \\
& x+2 y+3 z=4 \\
& x+4 y+9 z=1
\end{aligned}
$$

a) $x=-0.5, y=6, y=-2.5$
b) $x=-0.5, y=4, y=-2.5$
c) $x=4.5, y=6, z=1$
d) $\mathrm{x}=4.5, \mathrm{y}=6, \mathrm{z}=2$
15. Apply Cramer's rule to solve the following equations.
$2 x-y+3 z=9$
$x+y+z=6$
$x-y+z=2$
a) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
b) $\mathrm{x}=2, \mathrm{y}=2, \mathrm{z}=3$
c) $\mathrm{x}=2, \mathrm{y}=3, \mathrm{z}=7$
d) $\mathrm{x}=1, \mathrm{y}=3, \mathrm{z}=8$
16. Cramer's rule fails for
a) Determinant >0
c) Determinant $=0$
b) Determinant <0
d) Determinant $=$ non-real
17. Cramer's rule is not suitable for which type of problems?
a) Small system with 4 unknowns
c) Large systems
b) Systems with 2 unknowns
d) Systems with 3 unknowns
18. If the points $(3,-2),(x, 2),(8,8)$ are collinear, then the find the value of x
a) 2
b) 3
c) 4
d) 5

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

53 NA O

Position in Question Paper
Total Marks-14
Q.2. a) 4-Marks.
Q.4. a) 4-Marks.
Q.6.c) 6-Marks

Descriptive Question

Definition:

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.
Matrices are denoted by A, B, C
The order of a matrix is written as number of rows by number of columns. A matrix with m rows and n columns has an order $\mathrm{m} \mathrm{X} n$. A matrix of order m Xn is written as

$$
\mathbf{A}_{m \times n}=\left[\begin{array}{rrrrr}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]
$$

It is also written as $A=\left[a_{i j}\right]_{m x n}$ where $\mathrm{i}=$ row index $=1,2, \ldots \ldots \ldots \ldots . ., \mathrm{m}$
and $\mathrm{j}=$ column index $=1,2, \ldots \ldots \ldots, \mathrm{n}$
Q.1) If $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -3 & 0\end{array}\right]$, Find X such that $2 \mathrm{X}+3 \mathrm{~A}-4 \mathrm{~B}=\mathrm{I}(\mathbf{S}-\mathbf{1 8})$
Q.2) If $A=\left[\begin{array}{cc}2 & -1 \\ 4 & 3\end{array}\right] ; B=\left[\begin{array}{cc}3 & -2 \\ -1 & 4\end{array}\right]$; find the matrix X such that $2 A+X=3 B$.
17)
Q.3)

If $A=\left[\begin{array}{cc}3 & 2 \\ 1 & -1 \\ 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -1 \\ 3 & 2 \\ 4 & -2\end{array}\right]$; verify that $A+B=B+A(\mathbf{S} \mathbf{- 1 6})$

Maratha Vidya Prasarak Samaj's
 Rajarshi Shahu Maharaj Polytechnic, Nashik

Q.4)

Find the value of a and b if $\quad\left[\begin{array}{cc}a-4 b & 5 \\ 6 & -a+b\end{array}\right]=\left[\begin{array}{cc}11 & 5 \\ 6 & -5\end{array}\right]$
Q.5)

If $A=\left[\begin{array}{ccc}x & 2 & -5 \\ 3 & 1 & 2 y\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 y+5 & 6 & -15 \\ 9 & 3 & -6\end{array}\right]$ and if $3 A=B$,
find x and y. (S-14)
Q.6)

Find x, y, z if $\left[\begin{array}{ccc}2+x & -1 & 3 \\ 0 & y & z \\ 4 & 1 & 3\end{array}\right]+\left[\begin{array}{ccc}1+x & 2 & 3 \\ 0 & 1+y & 4 \\ 2 & 3 & 5\end{array}\right]=\left[\begin{array}{ccc}6 & 1 & 6 \\ 0 & -1 & 6 \\ 6 & 4 & 8\end{array}\right]$.
Q.7)

Find x and y if $\quad\left\{4\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 3\end{array}\right]-2\left[\begin{array}{ccc}1 & 3 & -1 \\ 2 & -3 & 4\end{array}\right]\right\}\left[\begin{array}{c}2 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$.
Q.8)

Find x, y, z if $\quad\left\{\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2\end{array}\right]+2\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0\end{array}\right]\right\}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
Scalar Matrix: - The scalar matrix is basically a square matrix, whose all offdiagonal elements are zero and all on-diagonal elements are equal.
eg.

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Q.9)

If $A=\left[\begin{array}{lll}2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2\end{array}\right]$, show that $A^{2}-8 A$ is a scalar matrix. (W-18, $\left.\mathbf{S}-\mathbf{1 9}\right)$
Identity Matrix: - A square matrix in which all the main diagonal elements are 1's and all the remaining elements are 0's is called an Identity Matrix. Identity Matrix is also called Unit Matrix.
Identity Matrix is denoted with the letter " $\mathbf{I}_{\mathrm{n} \times \mathrm{n}}$ ", where $n \times n$ represents the order of the matrix.
eg.

$$
I_{2 x 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad I_{3 x 3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Q.10)

If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right]$; find $A^{2}-3 A+9 I$ where I is unit matrix.
Q.11)

If $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4\end{array}\right]$; prove that $A^{2}=\mathrm{I} .(\mathbf{W}-\mathbf{1 8})$

Zero Matrix or Null Matrix: -

A zero matrix or null matrix is a matrix all of whose entries are zero.
eg.

$$
O_{2 x 2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad O_{3 x 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Q.12) If $A=\left[\begin{array}{cc}3 & 9 \\ -1 & -3\end{array}\right]$; show that A^{2} is null matrix. (S-17)
Q.13) If $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right] ; B=\left[\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right] ; C=\left[\begin{array}{cc}-3 & 1 \\ 2 & 0\end{array}\right]$; verify that $A(B+C)=A B+A C$ ($\mathbf{W}-14$)
Q.14)

If $A=\left[\begin{array}{cc}1 & -2 \\ -3 & -1\end{array}\right] ; B=\left[\begin{array}{ccc}4 & 2 & -5 \\ 1 & 0 & 3\end{array}\right] ; C=\left[\begin{array}{ccc}6 & -7 & 0 \\ -1 & 2 & 5 \\ 1 & 0 & 3\end{array}\right]$, prove that
$(A B) C=A(B C) . \quad(\mathbf{S - 1 5})$
Q.15)

If $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 3 & 2\end{array}\right] ; B=\left[\begin{array}{cc}1 & 3 \\ 3 & 0 \\ 0 & 1\end{array}\right] ; C=\left[\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right]$; find (AB)C. (W-15)
Transpose of a matrix: -
If $=\left[a_{i j}\right]$, then its transpose A^{T} or $A^{\prime}=\left[a_{i j}\right]$ is obtained by interchanging the rows and the columns.
Q.16)

If $A=\left[\begin{array}{cc}2 & -3 \\ 1 & 5\end{array}\right] ; B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 1 & 0 & 1\end{array}\right]$; verify that $(A B)^{T}=B^{T} A^{T} .(S-16)$
Q.17)

If $A=\left[\begin{array}{lll}2 & 5 & 6 \\ 0 & 1 & 2\end{array}\right] ; B=\left[\begin{array}{ll}6 & 1 \\ 0 & 4 \\ 5 & 7\end{array}\right] ;$ verify that $(A B)^{T}=B^{T} A^{T} .(\mathbf{W}-17)$
Q.18)

If $=\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0\end{array}\right], B=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$, verify $(A B)^{T}=B^{T} A^{T}$.
Q.19)

If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}1 & 0 \\ 3 & -1\end{array}\right]$, find $A^{T}+B^{T}$ and $A^{T}-B^{T}(\mathbf{W}-15)$

Symmetric Matrix: -

A square matrix A is symmetric if $a_{i j}=a_{j i}$ for all i and j eg.
$A=\left[\begin{array}{lll}2 & 3 & 5 \\ 3 & 7 & 0 \\ 5 & 0 & 1\end{array}\right]$

Skew-Symmetric Matrix: -

A square matrix A is Skew-Symmetric if $a_{i j}=-a_{j i}$ for all i and j and all diagonal elements are zero.
eg.
$A=\left[\begin{array}{ccc}0 & 5 & -3 \\ -5 & 0 & 9 \\ 3 & -9 & 0\end{array}\right]$
Q.20) Express the matrix A as sum of symmetric and skew symmetric matrix of

$$
A=\left[\begin{array}{ccc}
-1 & 7 & 1 \tag{S-15,S-17}\\
2 & 3 & 4 \\
5 & 0 & 5
\end{array}\right]
$$

Q.21) Express the matrix A as sum of symmetric and skew symmetric matrix of

$$
A=\left[\begin{array}{ccc}
4 & 2 & -3 \\
1 & 3 & -6 \\
-5 & 0 & -7
\end{array}\right]
$$

Orthogonal Matrix: -

If $A A^{T}=A^{T} A=I$, then the matrix A is called orthogonal
Q.22)

Show that matrix $A=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$ is an orthogonal matrix. (W-16)
Singular Matrix: -
A square matrix A is singular if $|A|=0$
Non-Singular Matrix: -
A square matrix A is non-singular if $|A| \neq 0$
Q.23) If $A=\left[\begin{array}{lll}7 & 0 & 2 \\ 1 & 2 & 6 \\ 4 & 5 & 3\end{array}\right]$; find whether matrix is singular or non - singular.
Q.24)

If $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 4 & 1 & -3 \\ 0 & -1 & 1\end{array}\right]$; find $|A|$ and verify that matrix A is singular or non singular matrix.
Q.24)

If $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right] ; B=$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right] ; \text { whether } \mathrm{AB} \text { is singular or non }- \text { singular matrix? }
$$

Q.25)

If $A=\left[\begin{array}{ccc}-2 & 0 & 2 \\ 3 & 4 & 5\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 5 \\ 0 & 2\end{array}\right]$, Whether AB is singular or non-singular matrix? (W-19)
Q.26)

If $A=\left[\begin{array}{ccc}3 & 2 & -5 \\ 4 & 5 & 0\end{array}\right], B=\left[\begin{array}{cc}5 & 1 \\ -2 & 3 \\ 0 & -1\end{array}\right]$, Whether AB is singular or non-singular matrix?
Q.28)

Find the adjoint of matrix $A=\left[\begin{array}{lll}2 & 5 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$.
Q.29)

Find the adjoint of matrix $A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 2 & 4 & 4 \\ 3 & 2 & 1\end{array}\right]$.
Q.30)

Find the adjoint of matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7\end{array}\right]$.
Q.31)

Find inverse of matrix $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$. (W-15)
Q.32)

Find A^{-1} by adjoint method, if $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ -1 & 2 & 3 \\ 1 & 4 & 1\end{array}\right]$.
Q.33) Find the inverse of the matrix by using adjoint method.

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \tag{S-16}\\
-1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right]
$$

Q.34)

Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ by adjoint method.
Q.35)

Find A^{-1} by adjoint method, if $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 0 & 4 \\ 1 & -1 & 1\end{array}\right]$.
Q.36) Solve the following equations by matrix inversion method.

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

$$
x+y+z=3 ; \quad 3 x-2 y+3 z=4 ; \quad 5 x+5 y+z=11 .(\mathbf{W}-16, \mathbf{W}-19)
$$

Q.37) Using matrix inversion method solve the following equations.
$x+y+z=3 ; \quad x+2 y+3 z=4 ; \quad x+4 y+9 z=6 .(S-17, \mathbf{W}-17)$
Q.38) Solve the following equations by matrix inversion method.
$x+3 y+2 z=6 ; \quad 3 x-2 y+5 z=5 ; \quad 2 x-3 y+6 z=7(\mathbf{W}-\mathbf{1 5}, \mathbf{W}-\mathbf{1 8})$
Q.39) Solve the following equations by by matrix inversion method.
$x+y+z=6 ; \quad 3 x-y+3 z=10 ; 5 x+5 y-4 z=3 . \quad(\mathbf{S - 1 9})$
Q.40) Solve the following equations by by matrix inversion method.
$x+3 y+3 z=12 ; \quad x+4 y+4 z=15 ; \quad x+3 y+4 z=13$.
Q.41) Solve the following equations by matrix inversion method.
$3 x+y+2 z=3 ; \quad 2 x-3 y-z=-3 ; \quad x+2 y+z=4 .(S-16)$
Q.42) Solve the following equations by matrix inversion method
$2 \mathrm{x}+\mathrm{y}=3 ; \quad 2 \mathrm{y}+3 \mathrm{z}=4 ; 2 \mathrm{x}+2 \mathrm{z}=8 .(\mathbf{W}-\mathbf{1 3})$

MCQ Question

(Total number of Question=Marks*3=14*3=42)
Note: Correct answer is marked with bold

1. The transpose of a rectangular matrix is a
a) Rectangular matrix
c) Square matrix
b) Diagonal matrix
d) Scalar matrix
2. The transpose of a column matrix is
a) Zero matrix
c) Column matrix
b) Diagonal matrix
d) Row matrix
3. Two matrices A and B are multiplied to get $A B$ if
a) Both are rectangular
b) Both have same order
c) No. of columns of A is equal to rows of B
d) No. of rows of A is equal to no. of columns of B
4. If $|A|=0$, then A is
a) Zero matrix
b) Singular matrix
c) Non-singular matrix
d) 0
5. If A is a symmetric matrix, then $A^{\prime}=$
a) \mathbf{A}
d) Diagonal matrix
b) $|A|$
c) 0
6. $(A B)^{\prime}=$?
a) $A^{\prime} B^{\prime}$
b) $B^{\prime} \boldsymbol{A}^{\prime}$
c) $\frac{1}{A B}$
d) AB
7. For any non-singular A, A^{-1} is equal to
a) $|A| A d j(A)$
b) $\frac{1}{|A| \operatorname{Adj}(A)}$
c) $\frac{\operatorname{Adj}(A)}{|A|}$
d) None of the above
8. A matrix having m rows and n columns with $\mathrm{m} \neq \mathrm{n}$ is said to be a
a) Rectangular matrix
c) Identity matrix
b) Square matrix
d) Scalar matrix
9. $\left[\begin{array}{lll}a & b & c\end{array}\right]$ is a
a) Zero matrix
c) Column matrix
b) Diagonal matrix
d) Row matrix
10. Two matrices A and B are added if
a) Both are rectangular
b) Both have same order
c) No. of columns of A is equal to rows of B
d) No. of rows of A is equal to no. of columns of B
11. The transpose of a row matrix is
a) Zero matrix
b) Diagonal matrix
c) Column matrix
d) Row matrix
12. Matrices obtained by interchanging rows and columns are called
a) Rectangular matrix
c) Symmetric matrix
b) Transpose matrix
d) None of the above
13. $\quad\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ is
a) Scalar matrix
c) Identity matrix
b) Diagonal matrix
d) Null matrix
14. If A is a matrix of order $m X n$ and B is a matrix of order $n X p$, then the order of $A B$ is
a) pXm
b) pXn
c) $n X p$
d) $\mathbf{m X p}$
15. The transpose of a square matrix is a
a) Rectangular matrix
c) Square matrix
b) Diagonal matrix
d) Scalar matrix
16. If $|A| \neq 0$, then A is
a) Zero matrix
c) Non-singular matrix
b) Singular matrix
d) Diagonal matrix
17. If A is a skew symmetric matrix, then A^{\prime} is equal is
a) -A
c) O
b) A
d) Diagonal matrix
18. Two matrices A and B are equal if
a) Both are rectangular
b) Both have same order
c) No. of columns of A is equal to rows of B
d) Both have same order and equal corresponding elements
19. The order of a matrix $|2 \quad 5 \quad 7|$ is
a) 3×3
b) 1 X 1
c) 3×1
d) 1×3
20. Find the value of ' a ' if $B=\left|\begin{array}{ll}1 & 4 \\ 2 & a\end{array}\right|$ is a singular matrix
a) 5
b) 6
c) 7
d) 8
21. Skew symmetric matrix are also called
a) Symmetric matrix
c) Square matrix
b) Identity matrix
d) Anti-symmetric matrix
22. A diagonal matrix having equal elements is called a
a) Square matrix
c) Scalar matrix
b) Identical matrix
d) Rectangular matrix
23. In matrices $(A+B)^{T}$ equals to
a) A^{T}
b) B^{T}
c) $A^{T}+B^{T}$
d) $A^{T} B^{T}$
24.

If $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 3 & 2 \\ 1 & 1\end{array}\right]$, then $A B^{T}$ is equal to
a) $\left[\begin{array}{cc}-3 & -2 \\ 10 & 7\end{array}\right]$
c) $\left[\begin{array}{rr}-3 & 7 \\ 10 & 2\end{array}\right]$
b) $\left[\begin{array}{cc}-3 & 10 \\ -2 & 7\end{array}\right]$
d) None of these
25. The matrix $\left[\begin{array}{ccc}0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0\end{array}\right]$ is
a) Skew-symmetric matrix
c) Diagonal matrix
b) Symmetric matrix
d) Upper triangular matrix
26. If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ then $\operatorname{adj}(\mathrm{A})$ is
a) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c) $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
d) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
27. If $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$ is the sum of a symmetric matrix B and skewsymmetric matrix C, then B is
a) $\left[\begin{array}{lll}6 & 6 & 7 \\ 6 & 2 & 5 \\ 7 & 5 & 1\end{array}\right]$
b) $\left[\begin{array}{ccc}0 & 2 & -2 \\ -2 & 5 & -2 \\ 2 & 2 & 0\end{array}\right]$
c) $\left[\begin{array}{ccc}6 & 6 & 7 \\ -6 & 2 & -5 \\ -7 & 5 & 1\end{array}\right]$
d) $\left[\begin{array}{ccc}0 & 6 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 0\end{array}\right]$
28. Find the determinant of the matrix
$\left[\begin{array}{ll}-2 & -5 \\ -2 & -5\end{array}\right]$
a) -28
b) -20
c) 20
d) $\mathbf{0}$
29. Find x if $\left[\begin{array}{ccc}1 & 2 & x \\ 1 & 1 & 1 \\ 2 & 1 & -1\end{array}\right]$ is singular
a) 1
b) 2
c) 3
d) 4
30. If $\left\{3\left[\begin{array}{cc}3 & 1 \\ 4 & 0 \\ 3 & -3\end{array}\right]-2\left[\begin{array}{cc}0 & 2 \\ -2 & 3 \\ -5 & 4\end{array}\right]\right\}\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, find x, y, z
a) $\mathrm{x}=-11, \mathrm{y}=-28, \mathrm{z}=-53$
b) $\mathrm{x}=11, \mathrm{y}=28, \mathrm{z}=53$
c) $x=11, y=-28, z=53$
d) $x=11, y=-28, z=-53$
31. Find x and y, if $\left\{3\left[\begin{array}{ccc}4 & 1 & 3 \\ 0 & -1 & -3\end{array}\right]-2\left[\begin{array}{ccc}3 & 2 & 4 \\ -6 & 1 & -3\end{array}\right]\right\}\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$
a) $x=-1, y=3$
b) $\mathrm{x}=1, \mathrm{y}=3$
c) $x=-1, y=-3$
d) $x=1, y=-3$
32. Find x, y, z if $\left\{\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & 2\end{array}\right]+2\left[\begin{array}{lll}3 & 0 & 2 \\ 1 & 4 & 5 \\ 2 & 1 & 0\end{array}\right]\right\}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
a) $\mathrm{x}=-31, \mathrm{y}=-53, \mathrm{z}=-19$
b) $x=-31, y=53, z=19$
c) $\mathrm{x}=31, \mathrm{y}=53, \mathrm{z}=19$
d) $x=31, y=-53, z=19$
33. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], B=\left[\begin{array}{l}1 \\ 9 \\ 8\end{array}\right]$, find AB
a) $\left[\begin{array}{l}43 \\ 97\end{array}\right]$
b) $\left[\begin{array}{l}40 \\ 97\end{array}\right]$
c) $\left[\begin{array}{l}43 \\ 90\end{array}\right]$
d) $\left[\begin{array}{l}-43 \\ -97\end{array}\right]$
34. If $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ -1 & 2 & 0 \\ 4 & 0 & 3\end{array}\right] ; B=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{lll}2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2\end{array}\right]$, then find the matrix D such that $2 \mathrm{~A}-3 \mathrm{~B}-\mathrm{D}=\mathrm{C}$
a) $\left[\begin{array}{ccc}3 & 5 & 2 \\ -1 & 8 & -1 \\ 10 & -2 & 13\end{array}\right]$
c) $\left[\begin{array}{ccc}-9 & 5 & 8 \\ 7 & 4 & 5 \\ 4 & -5 & 3\end{array}\right]$
b) $\left[\begin{array}{ccc}-3 & 5 & 2 \\ -7 & -4 & -1 \\ 4 & -2 & -5\end{array}\right]$
d) None of these
35. If $A A^{T}=A^{T} A=I$, then matrix A is called
a) Singular matrix
b) Identity matrix

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
c) Orthogonal matrix
36. Find the inverse of the matrix $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$
a) $\left[\begin{array}{ccc}1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3\end{array}\right]$
b) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -6 & 7 & -5 \\ 5 & -4 & 3\end{array}\right]$
c) $\left[\begin{array}{ccc}2 & -1 & 1 \\ -6 & 4 & -5 \\ 5 & -4 & 3\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & -1 & 1 \\ -6 & 4 & -5 \\ 5 & -4 & 3\end{array}\right]$
37. If $A=\left[\begin{array}{ccc}4 & -5 & 2 \\ 0 & 6 & 9 \\ 2 & 7 & 8\end{array}\right]$, the diagonal elements are
a) $\mathbf{4 , 6 , 8}$
c) $2,6,2$
b) $4,0,2$
d) All of the above
38. If $A=\left[\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$, then product $B A$ is
a) $\left[\begin{array}{cc}3 & 2 \\ 13 & 7\end{array}\right]$
c) $\left[\begin{array}{cc}-3 & 2 \\ 13 & 7\end{array}\right]$
b) $\left[\begin{array}{cc}3 & -2 \\ 13 & -7\end{array}\right]$
d) None of these
39. If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right], B=\left[\begin{array}{cc}-2 & -1 \\ 3 & 0\end{array}\right]$, then A-2B-I gives
a) $\left[\begin{array}{ll}4 & 6 \\ 4 & 6\end{array}\right]$
b) $\left[\begin{array}{ll}-4 & -6 \\ -4 & -6\end{array}\right]$
c) $\left[\begin{array}{cc}4 & 6 \\ -4 & 6\end{array}\right]$
d) $\left[\begin{array}{cc}4 & 6 \\ 4 & -6\end{array}\right]$
40. If $B=\left[\begin{array}{cc}2 & -3 \\ 1 & 6\end{array}\right]$, then transpose of B is
a) $\left[\begin{array}{ll}2 & 1 \\ 3 & 6\end{array}\right]$
b) $\left[\begin{array}{cc}2 & 1 \\ -3 & 6\end{array}\right]$
c) $\left[\begin{array}{cc}2 & -3 \\ 1 & 6\end{array}\right]$
d) $\left[\begin{array}{cc}2 & 3 \\ 1 & -6\end{array}\right]$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
41. If $A=\left[\begin{array}{cc}4 & 5 \\ -2 & 3\end{array}\right]$, then $\left(A^{T}\right)^{T}$ is
a) $\left[\begin{array}{cc}4 & -2 \\ 5 & 3\end{array}\right]$
c) $\left[\begin{array}{ll}4 & 5 \\ 2 & 3\end{array}\right]$
b) $\left[\begin{array}{cc}4 & 5 \\ -2 & 3\end{array}\right]$
d) None of these
42. If $A=\left[\begin{array}{ll}3 & -6 \\ 2 & -4\end{array}\right]$, then $|A|$ is
a) -12
c) 0
b) 12
d) None of the above
43. The matrix $A=\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 5\end{array}\right]$ is a
a) Symmetric matrix
c) Orthogonal matrix
b) skew-symmetric matrix
d) Singular matrix
44. If $A=\left[\begin{array}{lll}5 & 3 & 2 \\ 0 & 4 & 1 \\ 0 & 0 & 3\end{array}\right]$, then $|A|=$?
a) 30
b) 40
c) 50
d) 60
45. The matrix $A=\left[\begin{array}{ll}9 & 0 \\ 0 & 9\end{array}\right]$ is a
a) Even matrix
c) Scalar matrix
b) Odd matrix
d) Identity matrix

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13. Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

4. Partial Fraction

Position in Question Paper

Q.2. b) 4-Marks.
Q.4. b) 4-Marks.

Descriptive Question

Proper Fraction: -

When the degree of the polynomial in the numerator is less than the degree of the polynomial in denominator, the fraction is called proper fraction.
Case-I
When denominator has distinct linear factors
To every linear factor $(a x+b)$ in the denominator of a proper fraction, there exists a partial fraction of the form
$\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\frac{A_{3}}{a_{3} x+b_{3}}+\cdots+\frac{A_{n}}{a_{n} x+b_{n}}$ where $A_{1}, A_{2}, A_{3}, \ldots . ., A_{n} \epsilon R$
Q.1) Resolve into partial fractions. $\frac{x+4}{x(x+1)}$.
Q.2) Resolve into partial fractions. $\frac{x+3}{(x-1)(x+1)(x+5)} \cdot \quad(W-17)$
Q.3) Resolve into partial fractions. $\frac{3 x-1}{(x-4)(x+1)(x-1)}$.
Q.4) Resolve into partial fractions. $\frac{1}{x^{3}-x} \quad$ (S-15)
Q.5) Resolve into partial fractions. $\frac{x^{3}+1}{x^{2}+6 x}$.
Q.6) Resolve into partial fractions $\frac{\mathrm{e}^{\mathrm{x}}+1}{\left(\mathrm{e}^{\mathrm{x}}+2\right)\left(\mathrm{e}^{\mathrm{x}}+3\right)}$.
Q.7) Resolve into partial fractions $1+\frac{1}{x^{2}-1}$.
Q.8) Resolve into partial fractions $\frac{x-5}{x^{3}+x^{2}-6 x}$.
Q.9) Resolve into partial fractions $\frac{3 x-1}{(x-4)(2 x+1)(x-1)}$.
Q.10) Resolve into partial fractions $\frac{x-5}{x^{3}+x^{2}-6 x}$. (S.Q.P)

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
Q.11) Resolve into partial fractions $\frac{\mathrm{x}^{2}+1}{(\mathrm{x})\left(\mathrm{x}^{2}-1\right)}$.
(S-17, S-18)
Q.12) Resolve into Partial Fraction $\frac{2 x+3}{x^{2}-2 x-3}$. $(\mathbf{W}-19)$

Case-II

When denominator has repeated linear factors

To every linear factor $(a x+b)$, occurring n times in the denominator, there exists a sum on n partial fractions
$\frac{P(x)}{Q(x)}=\frac{A_{1}}{(a x+b)}+\frac{A_{2}}{(a x+b)^{2}}+\frac{A_{3}}{(a x+b)^{3}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}$, where $A_{1}, A_{2}, A_{3}, \ldots \ldots, A_{n} \epsilon R$
Q.13) Resolve into partial fractions. $\frac{3 \mathrm{x}+2}{(\mathrm{x}+1)\left(\mathrm{x}^{2}-1\right)}$. (S-19)
Q.14) Resolve into partial fractions $\frac{x^{2}}{(x+1)(x+2)^{2}}$.

Case-III

When denominator has distinct irreducible quadratic factor
To every irreducible quadratic factor $a x^{2}+b x+c$, in the denominator, there exists a partial fraction of the form
$\frac{P(x)}{Q(x)}=\frac{A}{a x+b}+\frac{B}{a x^{2}+b x+c}$
Q.15) Resolve into partial fractions. $\frac{x^{2}+23 x}{(x+3)\left(x^{2}+1\right)}$. (S.Q.P, W-16, W-18)
Q.16) Resolve into partial fractions. $\frac{x^{2}-x+3}{(x-2)\left(x^{2}+1\right)}$ (W-17)
Q.17) Resolve into partial fractions. $\frac{x^{2}+36 x+6}{(x-1)\left(x^{2}+2\right)}$.
Q.18) Resolve into partial fractions $\frac{x}{x^{3}+1} . \quad(\mathbf{W - 1 5)}$
Q.19) Resolve into partial fractions $\frac{3 \mathrm{x}-2}{(\mathrm{x}+2)\left(\mathrm{x}^{2}+4\right)}$. (S-16, W-19)
Q.20) Resolve into partial fractions $\frac{x^{2}+1}{(x+1)\left(x^{2}+4\right)}$.
Q.21) Resolve into partial fractions $\frac{2 x+1}{(x-1)\left(x^{2}+1\right)}$.

Improper Fraction: -

When the degree of the polynomial in the numerator is greater than or equal to the degree of the polynomial in denominator, the fraction is called improper fraction.
Q.22) Resolve into partial fractions. $\frac{x^{4}}{x^{3}+1}$.
Q.23) Resolve into partial fractions. $\frac{x^{3}+1}{x^{2}+6 x}$.
Q.24) Resolve into partial fractions $\frac{x^{3}}{x^{2}-1}$.

MCQ Question

(Total number of Question=Marks*3=8*3=24)
Note: Correct answer is marked with bold.

1. The equivalent partial fraction of $\frac{x+11}{(x+1)(x-3)^{2}}$
a) $\frac{A}{x+1}+\frac{B}{(x-3)^{2}}$
c) $\frac{A}{x+1}+\frac{B x+C}{(x-3)^{2}}$
b) $\frac{A}{x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$
d) None of these
2. Form of partial fraction of $\frac{1}{(x+1)(x-2)}$ is
a) $\frac{A}{x+1}+\frac{B}{x-2}$
c) $\frac{A}{x+1}+\frac{B x+C}{x-2}$
b) $\frac{A x+B}{x+1}+\frac{C}{x-2}$
d) None of these
3. State the type of partial fraction of $\frac{125+4 x-9 x^{2}}{(x-1)(x+3)(x+4)}$
a) Linear factor
c) Quadratic factor
b) Repeated factor
d) Improper fraction
4. State the type of partial fraction of $\frac{6 x+5}{(2 x-1)^{2}}$
a) Linear factor
c) Quadratic factor
b) Repeated factor
d) Improper fraction
5. If $\frac{5}{(x-1)^{2}}=\frac{A}{(x-1)^{2}}+\frac{B}{x-1}$, then the value of A is
a) 0
b) 1
c) 2
d) 5
6. If $x+2=A(x+1)+B(x)$, then the value of A will be
a) -2
b) -1

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
c) 1
d) 2
7. Resolve into Partial Fraction $\frac{-5 x-41}{x^{2}+x-12}$
a) $\frac{3 x}{x+4}-\frac{8 x}{x-3}$
b) $\frac{-21}{x-3}+\frac{16}{x+4}$
c) $\frac{3}{x+4}-\frac{8}{x-3}$
d) $\frac{-8}{x+4}+\frac{3}{x-3}$
8. Resolve into Partial Fraction $\frac{x+14}{(x-4)(x+2)}$
a) $\frac{3}{x-4}-\frac{2}{x+2}$
b) $\frac{-5}{x-4}+\frac{6}{x+2}$
c) $\frac{2}{x-4}-\frac{3}{x+2}$
d) $\frac{-2}{x-4}+\frac{3}{x+2}$
9. The partial fraction decomposition of $\frac{2}{x^{2}-1}$ is
a) $\frac{1}{x-1}+\frac{1}{x+1}$
c) $\frac{1}{x+1}-\frac{1}{x-1}$
b) $\frac{1}{x-1}-\frac{1}{x+1}$
d) None of these
10. $\frac{9 x^{2}}{x^{3}-1}$ is
a) Improper fraction
c) Polynomial
b) Proper fraction
d) Equation
11. $\frac{x^{2}-3}{3 x+1}$
a) Polynomial
c) Improper fraction
b) Equation
d) Proper fraction
12. $x^{3}+2 x^{2}-3 x+5$ is
a) An equation
c) Proper fraction
b) A polynomial
d) Improper fraction
13. Partial fraction of $\frac{a x+b}{(c x+d)^{2}}=$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
a) $\frac{A}{c x+d}+\frac{B}{(c x+d)^{2}}$
c) $\frac{A x+B}{c x+d}+\frac{C}{(c x+d)^{2}}$
b) $\frac{A}{c x+d}+\frac{B x+c}{(c x+d)^{2}}$
d) None of these
14. Partial fraction of $\frac{7 x+25}{(x+3)(x+4)}=$
a) $\frac{3}{x+3}+\frac{5}{x+4}$
c) $\frac{4}{x+3}+\frac{3}{x+4}$
b) $\frac{6}{x+3}+\frac{5}{x+4}$
d) None of these
15. An improper fraction can be reduced to proper fraction by
a) Addition
c) Multiplication
b) Subtraction
d) Division
16. Partial fractions of $\frac{x^{2}+1}{x^{3}+1}$ will be of the form
a) $\frac{A}{x-1}+\frac{B}{x^{2}-x+1}$
c) $\frac{A}{x+1}+\frac{B x+c}{x^{2}-x+1}$
b) $\frac{A}{x+1}+\frac{B}{x^{2}-x+1}$
d) None of these
17. Resolve into Partial Fraction $\frac{x}{(x+2)(x-3)}$
a) $\frac{2}{5(x+2)}-\frac{3}{5(x-3)}$
c) $\frac{2}{5(x-2)}+\frac{3}{5(x+3)}$
b) $\frac{2}{5(x+2)}+\frac{3}{5(x-3)}$
d) None of these
18. A fraction in which the degree of the numerator is less the degree of the denominator is called
a) Polynomial
c) Proper fraction
b) Equation
d) Improper fraction
19. The quotient of two polynomials $\frac{P(x)}{Q(x)}$ where $Q(x) \neq 0$ with no common fraction is called a
a) An expression
c) Equation
b) Rational fraction
d) Identity
20. Partial fraction of $\frac{1}{\left(x^{2}+1\right)(x+1)}=$
a) $\frac{A}{x^{2}+1}+\frac{B}{x+1}$
c) $\frac{A}{x^{2}+1}+\frac{B x+C}{x+1}$
b) $\frac{A x+B}{x^{2}+1}+\frac{C}{x+1}$
d) None of these
21. Which of the following shows the correct factors of the denominator in the fraction shown below? $\frac{3 x-18}{2 x^{2}-5 x-3}$
a) $(2 x+1)(x-3)$
b) $(2 x-1)(x+3)$
c) $(2 x+1)(x+3)$
d) $(2 x-1)(x-3)$
22. Decompose into partial fractions $\frac{5 x^{2}+12 x+3}{x(x+1)^{2}}$
a) $\frac{3}{x}+\frac{2}{x+1}+\frac{4}{(x+1)^{2}}$
b) $\frac{3}{x}+\frac{2}{x+1}-\frac{4}{(x+1)^{2}}$
c) $\frac{3}{x}-\frac{2}{x+1}+\frac{4}{(x+1)^{2}}$
d) $\frac{3}{x}-\frac{2}{x+1}-\frac{4}{(x+1)^{2}}$
23. Decompose into partial fractions $\frac{3 x+15}{(x+4)^{2}}$
a) $\frac{-3}{x+4}-\frac{3}{(x+4)^{2}}$
b) $\frac{3}{x+4}+\frac{3}{(x+4)^{2}}$
c) $\frac{3}{(x+4)^{2}}$
d) $\frac{-3}{(x+4)^{2}}$
24. Decompose into partial fractions $\frac{7 x+10}{(x+1)\left(x^{2}-4\right)}$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
a) $\frac{2}{x-2}-\frac{1}{x+2}-\frac{1}{x+1}$
c) $\frac{-2}{x-2}+\frac{1}{x+2}+\frac{1}{x+1}$
b) $\frac{-1}{x-2}+\frac{2}{x+2}+\frac{1}{x+1}$
d) None of these
25. Decompose into partial fractions $\frac{5 x^{2}+31 x+46}{(x+2)(x+3)^{2}}$
a) $\frac{-4}{x+2}-\frac{1}{x+3}-\frac{2}{(x+3)^{2}}$
c) $\frac{4}{x+2}+\frac{1}{x+3}+\frac{2}{(x+3)^{2}}$
b) $\frac{4}{x+2}-\frac{1}{x+3}-\frac{2}{(x+3)^{2}}$
d) None of these
26. Decompose into partial fractions $\frac{2 x^{2}+6 x-2}{x^{3}-1}$
a) $\frac{-2}{x-1}-\frac{4}{x^{2}+x+1}$
b) $\frac{2}{x-1}+\frac{4}{x^{2}+x+1}$
c) $\frac{2}{x-1}-\frac{4}{x^{2}+x+1}$
d) $\frac{-2}{x-1}+\frac{4}{x^{2}+x+1}$

5. Trigonometric ratios of Compound, Allied, Multiple and Sub-multiple Angles

Position in Question Paper

Total Marks-14
Q.1. c) 2-Marks.
Q.3. a) 4-Marks.
Q.3. b) 4-Marks.
Q.4. e) 4-Marks.

Descriptive Question

Compound Angle:

The angle obtained by algebraic sum or difference of two or more angles is called a compound angle

Formulae:

i) $\quad \cos (A+B)=\cos A \cos B-\sin A \sin B$
ii) $\quad \cos (A-B)=\cos A \cos B+\sin A \sin B$
iii) $\quad \sin (A+B)=\sin A \cos B+\cos A \sin B$
iv) $\quad \sin (A-B)=\sin A \cos B-\cos A \sin B$

Allied Angle:

If the sum or difference of the measures of two angles is either zero is an integral multiple of 90°, that is, $n \cdot \frac{\pi}{2}$ where $n \in I$, then these angles are called allied angles Formulae:

Angle Trig. Ratio	$\frac{\boldsymbol{\pi}}{\mathbf{2}}-\boldsymbol{\theta}$	$\frac{\boldsymbol{\pi}}{\mathbf{2}}+\boldsymbol{\theta}$	$\boldsymbol{\pi}-\boldsymbol{\theta}$	$\boldsymbol{\pi}+\boldsymbol{\theta}$	$\frac{\mathbf{3 \pi}}{\mathbf{2}}-\boldsymbol{\theta}$	$\frac{\mathbf{3 \pi}}{\mathbf{2}}+\boldsymbol{\theta}$	$\mathbf{2 \pi}-\boldsymbol{\theta}$	$\mathbf{2 \pi + \boldsymbol { \theta }}$
$\mathbf{S i n}$	$\cos \theta$	$\cos \theta$	$\sin \theta$	$-\sin \theta$	$-\cos \theta$	$-\cos \theta$	$-\sin \theta$	$\sin \theta$
$\mathbf{C o s}$	$\sin \theta$	$-\sin \theta$	$-\cos \theta$	$-\cos \theta$	$-\sin \theta$	$\sin \theta$	$\cos \theta$	$\cos \theta$
Tan	$\cot \theta$	$-\cot \theta$	$-\tan \theta$	$\tan \theta$	$\cot \theta$	$-\cot \theta$	$-\tan \theta$	$\tan \theta$
$\mathbf{C o t}$	$\tan \theta$	$-\tan \theta$	$-\cot \theta$	$\cot \theta$	$\tan \theta$	$-\tan \theta$	$-\cot \theta$	$\cot \theta$
$\mathbf{C o s e c}$	$\sec \theta$	$\sec \theta$	$\operatorname{cosec} \theta$	$-\operatorname{cosec} \theta$	$-\sec \theta$	$-\sec \theta$	$-\operatorname{cosec} \theta$	$\operatorname{cosec} \theta$
$\mathbf{S e c}$	$\operatorname{cosec} \theta$	$-\operatorname{cosec} \theta$	$-\sec \theta$	$-\sec \theta$	$-\operatorname{cosec} \theta$	$\operatorname{cosec} \theta$	$\sec \theta$	$\sec \theta$

Q.1) Without using calculator find the value of $\sin \left(-765^{0}\right)$ (S.Q.P)
Q.2) Without using calculator find the value of $\cos \left(-765^{\circ}\right)(\mathbf{W}-19)$
Q.3) Without using calculator find the value of $\sin \left(105^{\circ}\right)(\mathbf{W}-17)$
Q.4) Without using calulator, find the value of $\cos \left(105^{\circ}\right)$. (S-19)
Q.5) Find the value of $\sin \left(15^{0}\right)$ using compound angles. ($\mathbf{W}-18$)
Q.6) Without using calculator, find the value of $\sec \left(3660^{\circ}\right)$. (S-18)
Q.7) Without using calulator, find the value of $\cos \left(75^{\circ}\right)$. (S-17)
Q.8) Without using calulator, find the value of $\sin \left(75^{\circ}\right)$. (W-15)
Q.9) Without using calulator, find the value of $\tan \left(75^{\circ}\right)(\mathbf{W}-12)$
Q.10) Prove that $\sin 420^{\circ} \cos 390^{\circ}+\cos \left(-300^{\circ}\right) \sin \left(-330^{\circ}\right)=1$. (S-19)
Q.11) Without usin calculator, find the value of $\cos 570^{\circ} \sin 510^{\circ}+\sin \left(-330^{\circ}\right) \cos \left(-390^{\circ}\right) . \quad(\mathbf{S}-18)$
Q.12) If $\angle A \& \angle B$ are both obtuse angles and $\sin A=\frac{12}{13}$ and
$\cos B=\frac{-4}{5}$. Find $\sin (A+B), \cos (A+B) . \quad$ (S.Q.P, W-19)
Q.13) If $\tan A=\frac{1}{2} \tan B=\frac{1}{3}$, find the value of $\tan (A+B) \quad(\mathbf{W}-18, S-16)$
Q.14) If $\angle A \& \angle B$ are both obtuse angles and $\sin A=\frac{5}{13}$ and
$\cos B=\frac{-4}{5}$. Find (i) $\sin (A+B) . \quad$ (S.Q.P, S-18)
(ii) $\tan (A+B) \quad$ (S-15)
(iii) $\cos (A+B) \quad(\mathbf{S}-\mathbf{1 3})$
Q.15) If $\cos A=-\frac{3}{5}$ and $\sin B=\frac{20}{29}$, where A and B are the angles in the third and second quadrant respectively. Find $\tan (A+B)(\mathbf{S - 1 5})$
Q.16) If $\tan (x+y)=\frac{3}{4}$ and $\tan (x-y)=\frac{8}{15}$. Prove that $\tan 2 x=\frac{77}{36}$.

OR
Given $\tan (A+B)=\frac{3}{4} ; \tan (A-B)=\frac{77}{36}$, find $\tan 2 A$.
Q.17) If $\tan x=\frac{5}{6}$ and $\tan y=\frac{1}{11}$, prove that $x+y=\frac{\pi}{4}(\mathbf{W}-14)$
Q.18) Prove that $\sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B$. $(\mathbf{W}-17)$
Q.19) If $\tan A=\frac{1}{2}, \tan B=\frac{1}{3}$, find the value of $\tan (A+B) .(\mathbf{W}-18, S-16)$
Q.20) Prove $\tan \left(\frac{\pi}{4}+\mathrm{A}\right)=\frac{\cos \mathrm{A}+\sin \mathrm{A}}{\cos \mathrm{A}-\sin \mathrm{A}}$. (W-18)
Q.21) Prove that $\tan 3 A-\tan 2 A-\tan A=\tan 3 A \tan 2 A \tan A(\mathbf{S - 1 0})$
Q.22) Prove that $\tan 70^{\circ}-\tan 50^{\circ}-\tan 20^{\circ}=\tan 70^{\circ} \tan 50^{\circ} \tan 20^{\circ} \quad(\mathbf{S - 1 9})$
Q.23) If $A+B=\frac{\pi}{4}$; show that $(1+\tan A)(1+\tan B)=2$.
Q.24) Prove that $1+\tan \theta \tan 2 \theta=\sec 2 \theta(\mathbf{W}-19)$
Q.25) Prove that $\frac{1-\tan 2 \theta \tan \theta}{1+\tan 2 \theta \tan \theta}=\frac{\cos 3 \theta}{\cos \theta}$ ($\left.\mathbf{W}-\mathbf{1 3}, \mathbf{S}-\mathbf{1 7}\right)$
Q.26) Simplify $\frac{\cos ^{2}\left(180^{0}-\theta\right)}{\sin (-\theta)}+\frac{\cos ^{2}\left(270^{0}+\theta\right)}{\sin \left(180^{0}+\theta\right)}$.
(S.Q.P, W-19)
Q.27) Evaluate without using calculator $\frac{\tan 66^{\circ}+\tan 690^{\circ}}{1-\tan 66^{\circ} \tan 69^{\circ}}$. (W-14)
Q.28) Evaluate without using calculator $\frac{\tan 32^{\circ}+\tan 88^{\circ}}{1-\tan 32^{\circ} \tan 88^{0}}$. $(\mathbf{S}-16)$
Q.29) Evaluate without using calculator $\frac{\tan 85^{\circ}-\tan 40^{\circ}}{1+\tan 85^{\circ} \tan 40^{\circ}}$. $(\mathbf{S}-16)$
Q.30) In any $\triangle A B C$, prove that $\tan A+\tan B+\tan C=\tan A \tan B \tan C$. (W-14)
Q.31) Prove that $\frac{\cos 21^{0}-\sin 21^{0}}{\cos 21^{0}+\sin 21^{0}}=\cot 66^{\circ} \quad(\mathbf{S - 1 1})$

Multiple Angles:

If θ is any angle then integral multiples of θ such as $2 \theta, 3 \theta, \ldots \ldots$ are known as multiple angles.

Sub-Multiple Angles:

Angles of the form $\frac{\theta}{2}, \frac{3 \theta}{2}, \ldots \ldots$ are called Sub-Multiple Angles.

Sr. No	Multiple Angle Formulae	Sub-Multiple Angle Formulae
1$)$	$\sin 2 A=2 \sin A \cos A$	$\sin A=2 \sin \frac{A}{2} \cos \frac{A}{2}$
2$)$	$\sin 2 A=\frac{2 \tan A}{1+\tan ^{2} A}$	$\sin A=\frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}$
3$)$	$\cos 2 A=\cos ^{2} A-\sin ^{2} A$	$\cos A=\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}$
4$)$	$\cos 2 A=2 \cos ^{2} A-1$	$\cos A=2 \cos ^{2} \frac{A}{2}-\frac{1}{2}$
5$)$	$\cos 2 A=1-2 \sin ^{2} A$	$\cos A=\frac{1-\sin ^{2} \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}$
6$)$	$\cos 2 A=\frac{1-\tan ^{2} A}{1+\tan ^{2} A}$	

7)	$\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$	$\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}}$
8$)$	$1+\cos 2 A=2 \cos ^{2} A$	$1+\cos A=2 \cos ^{2} \frac{A}{2}$
9$)$	$1-\cos 2 A=2 \sin ^{2} A$	$1-\cos A=2 \sin ^{2} \frac{A}{2}$
10$)$	$\sin 3 A=3 \sin A-4 \sin ^{3} A$	
11$)$	$\cos 3 A=4 \cos A-3 \cos A$	
12$)$	$\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$	

Q.32) If $A=30^{\circ}$, verifythat (i) $\sin 2 A=2 \sin A \cos A$
(ii) $\cos 2 \mathrm{~A}=\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}} .(\mathbf{W}-17)$
Q.33) If $A=30^{\circ}$, verifythat $\sin 3 A=3 \sin A-4 \sin ^{3} A$ (W-08, S-10)
Q.34) If $\sin A=\frac{3}{5}$, find the value of $\sin 3 A(\mathbf{W - 0 9)}$
Q.35) If $\sin A=\frac{1}{2}$, find the value of $\sin 3 A(\mathbf{S}-14, S-17, \mathbf{W}$ -
17)
Q.36) If $\sin \alpha=0.4$, find the value of $\sin 3 \alpha(\mathbf{W}-14)$
Q.37) If $\cos \alpha=0.4$, find the value of $\cos 3 \alpha(\mathbf{W}-13)$
Q.38) If $\tan \left(\frac{A}{2}\right)=\frac{1}{\sqrt{3}}$, find the value of $(i) \cos A$. (S.Q.P)
(ii) $\sin A \quad(\mathbf{W}-16, \mathbf{S}-17)$
Q.39) If $\tan \frac{\theta}{2}=\frac{2}{3}$, find the value of $2 \sin \theta+3 \cos \theta$. (S-
18)
Q.40) Prove that $\frac{\sin 4 \theta+\sin 2 \theta}{1+\cos 2 \theta+\cos 4 \theta}=\tan 2 \theta$. (S-18)
Q.41) Prove $\frac{1+\sin 2 \mathrm{~A}+\cos 2 \mathrm{~A}}{1+\sin 2 \mathrm{~A}-\cos 2 \mathrm{~A}}=\cot \mathrm{A}$. (S.Q.P)
Q.42) Prove $\sin A \cdot \sin (60-A) \cdot \sin (60+A)=\frac{1}{4} \sin 3 A$. (W-18)
Q.43) Show that $\frac{\cos 3 A}{\cos A}+\frac{\sin 3 A}{\sin A}=4 \cos 2 A(\mathbf{W}-14)$
Q.44) Prove that $\frac{\sin A-\sin 3 A}{\sin ^{2} A-\cos ^{2} A}=2 \sin A$ (\mathbf{W}-12)
Q.45) Prove that $\sqrt{2+\sqrt{2+2 \cos 4 \theta}}=2 \cos \theta(\mathbf{S - 1 4})$
Q.46) Prove that $\frac{\sec 4 A-1}{\sec 2 A-1}=\frac{\tan 4 A}{\tan A}(\mathbf{W}-\mathbf{1 3}, \mathbf{W}-15)$
Q.47) Prove that $4 \cos A \cos \left(60^{0-} A\right) \cos \left(60^{\circ}+A\right)=\cos 3 A(\mathbf{S - 1 0})$
Q.48) Prove that $\tan A \tan \left(60^{0-} A\right) \tan \left(60^{\circ}+A\right)=\tan 3 A$
(W-10, W-15, S-17, W-19)
Q.49) Prove that $\frac{\cos A}{1+\cos A}=\frac{1}{2}\left[1-\tan ^{2} \frac{A}{2}\right](\mathbf{W}-11)$
Q.50) Prove that $\frac{1+\sin A-\cos A}{1+\sin A+\cos A}=\tan \frac{A}{2}$ (S-19)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

MCQ Question

(Total number of Question=Marks* $3=14 * 3=42$)

Note: Correct answer is marked with bold.
1 The value of $\sin \left(45^{\circ}+A\right) \cos \left(45^{\circ}-B\right)+\cos \left(45^{\circ}+A\right) \sin \left(45^{\circ}-B\right)$
a) $\operatorname{Cos}(\mathrm{A}-\mathrm{B})$
b) $\operatorname{Cos}(\mathrm{A}+\mathrm{B})$
c) $\operatorname{Sin}(A-B)$
d) $\operatorname{Sin}(A+B)$

2 If $\sin t=0.6$, then $\sin (2 t)=$?
a) -0.96
b) 0.48
c) 0.96
d) -0.48

3 If $\tan x=5$, then $\tan 2 x=$?
a) 10
b) $\frac{-5}{12}$
c) $\frac{1}{10}$
d) $\frac{5}{12}$

4 If $\cos t=\frac{3}{4}$, and $\sin t<0$, then $\sin 3 t=$?
a) $\frac{\sqrt{7}}{16}$
b) $\frac{-5 \sqrt{7}}{16}$
c) $\frac{-3 \sqrt{7}}{4}$
d) $\frac{5 \sqrt{7}}{16}$

5 If $\cos t=0.8$, then $\cos (2 t)=$?
a) 0.28
b) 0.4
c) 1.0
d) 1.6

6 In $\triangle A B C, \tan A-\tan B-\tan C=$?
a) $\boldsymbol{\operatorname { t a n }} A \tan B \tan C$
b) $-\tan A \tan B \tan C$
c) $\tan A \tan B-\tan A \tan C-$
d) $\tan A+\tan B+\tan C$ $\tan B \tan C$
7 If $\sin x=\frac{15}{17}$ and $\cos y=\frac{12}{13}, 0<x<\frac{\pi}{2}, 0<y<\frac{\pi}{2}$, find the value of $\sin (x+y)$
a) $\frac{220}{221}$
b) $\frac{180}{221}$
c) $\frac{-220}{221}$
d) $\frac{-180}{221}$

8 Without using calculator, find the value of $\cos 15^{0}$
a) $\frac{\sqrt{3}}{2 \sqrt{2}}$
b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
c) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
d) $\frac{-1}{2 \sqrt{2}}$

9 Without using calculator, find the value of $\sin 75^{\circ}$
a) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
c) $\frac{1}{2 \sqrt{2}}$
d) None of these

10 Without using calculator, find the value of $\tan \left(105^{\circ}\right)$
a) $\frac{\sqrt{3}+1}{1-\sqrt{3}}$
b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
c) $\frac{\sqrt{3}-1}{1-\sqrt{3}}$
d) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$

11 If A and B are acute angles, $\sin A=\frac{3}{5}, \cos B=\frac{12}{13}$, find $\cos (A+B)$
a) $\frac{-30}{65}$
b) $\frac{20}{65}$
c) $\frac{36}{65}$
d) $\frac{33}{65}$

12 Find $\cos (x-y)$, given that $\cos x=\frac{-4}{5}$ with $\pi<x<\frac{3 \pi}{2}$ and $\sin y=\frac{-24}{25}$ with $\pi<y<\frac{3 \pi}{2}$
a) $\frac{-44}{125}$
b) $\frac{4}{5}$
c) $\frac{44}{125}$
d) $\frac{-4}{5}$

13 Find $\sin (x-y)$, given that $\sin x=\frac{8}{17}$ with $0<x<\frac{\pi}{2}$ and $\cos y=\frac{-24}{25}$ with $\pi<y<\frac{3 \pi}{2}$
a) $\frac{-87}{425}$
b) $\frac{192}{425}$
c) $\frac{87}{425}$
d) $\frac{-105}{425}$

14 Without using calculator, find the value of $\sec \left(3660^{\circ}\right)$
a) 2
b) 3
c) 4
d) None of these

15 Without using calculator, find the value of $\cos \left(570^{\circ}\right) \sin \left(510^{\circ}\right)+\sin \left(-330^{\circ}\right) \cos \left(-390^{\circ}\right)$
a) -2
b) 2
c) $\mathbf{0}$
d) 1

16 If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, find the value of $\tan (A+B)$
a) 1
b) -1
c) 0
d) 2
$17 \tan \left(\frac{\pi}{4}+A\right)=$?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) $\frac{\cos A-\sin A}{\cos A+\sin A}$
b) $\frac{\cos A+\sin A}{\cos A-\sin A}$
c) $\frac{-\cos A-\sin A}{\cos A-\sin A}$
d) $\frac{\cos A-\sin A}{\sin A \cos A}$

18 Without using calculator, find the value of $\sin \left(-330^{\circ}\right)$
a) $\frac{1}{2}$
b) $\frac{-1}{2}$
c) $\frac{\sqrt{3}}{2 \sqrt{2}}$
d) $\frac{-\sqrt{3}}{2 \sqrt{2}}$

19 Without using calculator, find the value of $\cos \left(-765^{\circ}\right)$
a) $\frac{\sqrt{3}}{2}$
b) $\frac{-1}{2}$
c) $\frac{1}{2}$
d) $\frac{1}{\sqrt{2}}$
$20 \cos \left(180^{\circ}-\theta\right)=$?
a) $-\cos \theta$
b) $\cos \theta$
c) $\sin \theta$
d) $-\sin \theta$
$\cos \left(270^{\circ}+\theta\right)=?$
a) $\cos \theta$
b) $-\sin \theta$
c) $-\cos \theta$
d) $\boldsymbol{\operatorname { s i n }} \theta$

22 If $\angle \mathrm{A}$ and $\angle B$ are obtuse angles and $\sin A=\frac{12}{13}, \cos B=\frac{-4}{5}$, find $\cos (A+B)$
a) $\frac{5}{13}$
b) $\frac{3}{5}$
c) $\frac{56}{65}$
d) $\frac{-16}{65}$

23 Without using calculator, find the value of $\sin 22^{0} \cos 38^{0}+\cos 22^{\circ} \sin 38^{0}$
a) $\frac{\sqrt{3}}{2}$
b) $\frac{-\sqrt{3}}{2}$
c) $\frac{1}{2}$
d) None of these

24 If $\cos A=\frac{-3}{5}, \sin B=\frac{20}{29}$, where A and B are the angles in the third and second quadrant respectively. Find $\tan (A+B)$
a) $\frac{-17}{145}$
b) $\frac{24}{143}$
c) $\frac{24}{145}$
d) $\frac{143}{145}$

25 Evaluate without using calculator $\frac{\tan 32^{\circ}+\tan 88^{\circ}}{1-\tan 32^{\circ} \tan 88^{\circ}}$
a) $-\sqrt{3}$
b) $\sqrt{3}$
c) 1
d) -1

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

26 Evaluate without using calculator $\frac{\tan 85^{\circ}-\tan 40^{\circ}}{1+\tan 85^{\circ} \tan 40^{\circ}}$
a) -2
b) 2
c) 1
d) -1

27 Find the value of $\sin \left(A+\frac{\pi}{6}\right)-\sin \left(A-\frac{\pi}{6}\right)=$?
a) $\boldsymbol{\operatorname { c o s }} \mathrm{A}$
b) $\sin \mathrm{A}$
c) $-\cos \mathrm{A}$
d) $-\sin \mathrm{A}$

28 Given $\tan (A+B)=\frac{3}{4}, \tan (A-B)=\frac{77}{36}$, find $\tan 2 A$
a) $\frac{26}{9}$
b) $\frac{-416}{87}$
c) $\frac{29}{48}$
d) None of these

29 If A and B are obtuse angles and $\sin A=\frac{5}{13}$ and $\cos B=\frac{-4}{5}$, then find $\sin (A+B)$
a) $\frac{-56}{65}$
b) $\frac{16}{65}$
c) $\frac{33}{65}$
d) $\frac{63}{65}$

30 If $\sin A=\frac{1}{2}$, find $\sin 3 A$
a) -1
b) 0
c) 1
d) None of these

31 If $\cos \alpha=0.4$, find $\cos 3 \alpha$
a) $\mathbf{- 0 . 9 4 4}$
b) 0.944
c) 0.68
d) None of these

32 If $\sin A=0.4$, find $\cos 2 A$ using multiple angle formula
a) -0.68
b) 0.3125
c) 0.68
d) None of these

33 Find $\cot \left(\frac{\pi}{4}+\theta\right) \cdot \cot \left(\frac{\pi}{4}-\theta\right)$
a) 0
b) -1
c) 1
d) None of these

34 Find $\sin \alpha$, if $\tan \left(\frac{\alpha}{2}\right)=\frac{1}{\sqrt{3}}$
a) $\frac{\sqrt{3}}{2}$
b) $\frac{1}{2}$
c) $\frac{-\sqrt{3}}{2}$
d) $\frac{-1}{2}$

35 If $\tan \frac{\theta}{2}=\frac{2}{3}$, find the value of $2 \sin \theta+3 \cos \theta$
a) 6
b) -3
c) 3
d) -6

36 Find $\tan A$, if $\tan \frac{A}{2}=0.6$
a) $\mathbf{1 . 8 7 5}$
b) -1.875
c) 3.875
d) -3.875

37 If $\tan A=\frac{1}{2}, \tan B=\frac{1}{3}$, find the value of $\tan (2 A+B)$
a) 7
b) 9
c) 3
d) 5

38 If $\tan A=3$ and $\tan B=2$, find the value of $\tan (2 A+B)$
a) $\frac{-1}{2}$
b) $\frac{1}{2}$
c) $\frac{3}{2}$
d) None of these

39 If $\sin A=0.4$, find the value of $\cos 3 A$
a) 0.3297
b) 0.3125
c) 0.9444
d) None of these

40 If $\tan \frac{x}{2}=0.2$, find $\cos x$
a) -0.9230
b) 0.9444
c) 0.9230
d) None of these
$41 \sin (A+B) \sin (A-B)=$?
a) $\boldsymbol{\operatorname { s i n }}^{2} A-\sin ^{2} B$
b) $\cos ^{2} A-\cos ^{2} B$
c) $\sin ^{2} A+\sin ^{2} B$
d) $\cos ^{2} A+\cos ^{2} B$
$42 \cos (A+B) \cos (A-B)=$?
a) $\cos ^{2} A-\cos ^{2} B$
b) $\cos ^{2} B-\cos ^{2} A$
c) $\cos ^{2} A-\sin ^{2} B$
d) None of these
$43 \cos A \cos B-\sin A \sin B=$?
a) $\sin (A-B)$
b) $\boldsymbol{\operatorname { c o s }}(\mathrm{A}+\mathrm{B})$
c) $\cos (A-B)$
d) $\sin (A+B)$
$44 \cos (A-B)=$?
a) $\sin A \cos B-\cos A \sin B$
b) $\cos A \cos B-\sin A \sin B$
c) $\sin A \cos B+\cos A \sin B$
d) $\cos A \cos B+\sin A \sin B$ $\sin (A-B)=?$
a) $\sin A \cos B-\cos A \sin B$
b) $\cos A \cos B-\sin A \sin B$
c) $\sin A \cos B+\cos A \sin B$
d) $\cos A \cos B+\sin A \sin B$
$46 \sin (A+B)=$?
a) $\sin A \cos B-\cos A \sin B$
b) $\cos A \cos B-\sin A \sin B$
c) $\sin A \cos B+\cos A \sin B$
d) $\cos A \cos B+\sin A \sin B$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

6. Factorization and Defactorization

Formulae

Q.3. c) 4-Marks.
Q.3. d) 4-Marks.

Descriptive Question

Factorization:

The process of conversion from sum/difference into product is known as Factorization.

Defactorization:

The process of conversion from product of terms into sum/difference of terms is known as Defactorization.
Defactorization Formulae:

1)	$2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
2)	$2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
3)	$2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
4)	$2 \sin A \sin B=\cos (A-B)-\cos (A+B)$

Factorization Formulae:

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

1)	$\sin C+\sin D=2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
2)	$\sin C-\sin D=2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
3)	$\cos C+\cos D=2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
4)	$\cos C-\cos D=2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)$

Q.1) Prove that $\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A}=\tan A$. (S-18)
Q.2) Prove that $\frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=\tan 5 A$.
(W-17, S-17, W-18, W-19)
Q.3) Prove that $\frac{\cos 2 A+2 \cos 4 A+\cos 6 A}{\cos A+2 \cos 3 A+\cos 5 A}=\cos A-\sin A \tan 3 A$. (S-19)
Q.4) Show that $\frac{\sin A+\sin 2 A+\sin 3 A+\sin 4 A}{\cos A+\cos 2 A+\cos 3 A+\cos 4 A}=\tan \left(\frac{5 A}{2}\right)$.
Q.5) Prove that $\frac{\sin 8 x-\sin 5 x}{\cos 7 x+\cos 6 x}=\sin x+\cos x \tan \frac{x}{2}$.
Q.6) Prove that $\frac{\cos 3 A+2 \cos 5 A+\cos 7 A}{\cos A+2 \cos 3 A+\cos 5 A}=\cos 2 A-\sin 2 A \tan 3 A$. ($\mathbf{W}-14$)
Q.7) Prove that $\frac{\sin A+2 \sin 2 \mathrm{~A}+\sin 3 \mathrm{~A}}{\cos \mathrm{~A}+2 \cos 2 \mathrm{~A}+\cos 3 \mathrm{~A}}=\tan 2 \mathrm{~A}$.
Q.8) Prove that $\frac{\sin 7 x+\sin x}{\cos 5 x-\cos 3 x}=\sin 2 x-\cos 2 x \cot x$.
Q.9) Prove that $\cos 20 \cos 40 \cos 60 \cos 80=\frac{1}{16} . \quad(\mathbf{W}-17, \mathbf{W}-18, \mathrm{~S}-18, \mathbf{W}-19)$
Q.10) Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\frac{3}{16}$.
(W-13, S-14, W-15, S-16, S-19)
Q.11) Show that $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}=0$.
Q.12) Without using calculator, show that $\frac{\sin \left(19^{0}\right)+\cos \left(11^{0}\right)}{\cos \left(19^{0}\right)-\cos \left(11^{0}\right)}=\sqrt{3}$.
Q.13) Prove that $\frac{\sin 8 \theta \cos \theta-\cos 3 \theta \sin 6 \theta}{\cos 2 \theta \cos \theta-\sin 3 \theta \sin 4 \theta}=\tan 2 \theta \quad$ (S-11)
Q.14) Prove that $\frac{\sin A+2 \sin 3 A+\sin 5 A}{\sin 3 A+2 \sin 5 A+\sin 7 A}=\cos 2 A-\cot 5 A \sin 2 A(\mathbf{S - 1 1})$
Q.15) Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{16}$. $(\mathbf{W}-16)$

MCQ Question

(Total number of Question=Marks*3=8*3=24)

Note: Correct answer is marked with bold.
1 Process of conversion of sum or difference into product is known as
a) Factorization
b) De-factorization
c) Both of these
d) None of these

2 Process of conversion of product into sum or difference is known as
a) Factorization
b) De-factorization
c) Both of these
d) None of these

3 Formula of $\sin C+\sin D$ is
a) $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
b) $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
c) $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
d) $2 \sin \left(\frac{C-D}{2}\right) \sin \left(\frac{D-C}{2}\right)$

4 Formula of $\sin C-\sin D$ is
a) $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
b) $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
c) $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
d) $2 \sin \left(\frac{C-D}{2}\right) \sin \left(\frac{D-C}{2}\right)$

5 Formula of $\cos C+\cos D$ is
a) $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
b) $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
c) $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
d) $2 \sin \left(\frac{C-D}{2}\right) \sin \left(\frac{D-C}{2}\right)$

6 Formula of $\cos C-\cos D$ is
a) $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
b) $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
c) $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
d) $2 \sin \left(\frac{C-D}{2}\right) \sin \left(\frac{D-C}{2}\right)$
$7 \quad \sin 75^{\circ}+\sin 15^{0}=$?
a) $\frac{\sqrt{3}}{\sqrt{2}}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{1}{\sqrt{2}}$
d) None of these

8 Find the value of $\cos 52^{\circ}+\cos 68^{\circ}+\cos 172^{\circ}$
Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
a) -1
b) 1
c) 0
d) 2

9 Formula of $2 \sin A \cos B$ is
a) $\boldsymbol{\operatorname { s i n }}(A+B)+\boldsymbol{\operatorname { s i n }}(A-B)$
b) $\sin (A+B)-\sin (A-B)$
c) $\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
d) $\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

10 Formula of $2 \cos A \sin B$ is
a) $\sin (A+B)+\sin (A-B)$
b) $\boldsymbol{\operatorname { s i n }}(A+B)-\boldsymbol{\operatorname { s i n }}(A-B)$
c) $\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
d) $\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

11 Formula of $2 \cos A \cos B$ is
a) $\sin (A+B)+\sin (A-B)$
b) $\sin (A+B)-\sin (A-B)$
c) $\boldsymbol{\operatorname { c o s }}(\mathrm{A}+\mathrm{B})+\boldsymbol{\operatorname { c o s }}(\mathrm{A}-\mathrm{B})$
d) $\cos (\mathrm{A}-\mathrm{B})-\cos (\mathrm{A}+\mathrm{B})$

12 Formula of $2 \sin A \sin B$ is
a) $\sin (\mathrm{A}+\mathrm{B})+\sin (\mathrm{A}-\mathrm{B})$
b) $\sin (A+B)-\sin (A-B)$
c) $\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$
d) $\boldsymbol{\operatorname { c o s }}(\mathrm{A}-\mathrm{B})-\boldsymbol{\operatorname { c o s }}(\mathrm{A}+\mathrm{B})$

13 Write $\cos 7 x \cos 4 x$ as a sum
a) $\cos 11 x+\cos 3 x$
b) $\cos 11 x-\cos 3 x$
c) $\frac{1}{2}[\cos (11 x)+\cos (3 x)]$
d) None of these

14 Express as sum or difference $\sin 55^{\circ} \sin 40^{\circ}$
a) $\frac{1}{2}\left[\sin \left(15^{\circ}\right)-\sin \left(95^{\circ}\right)\right]$
b) $\frac{1}{2}\left[\cos \left(15^{0}\right)-\cos \left(95^{0}\right)\right]$
c) $\frac{1}{2}\left[\cos \left(15^{\circ}\right)+\cos \left(95^{\circ}\right)\right]$
d) None of these
$15 \frac{\sin 4 A+\sin 5 A+\sin 6 A}{\cos 4 A+\cos 5 A+\cos 6 A}=$?
a) $\tan 4 \mathrm{~A}$
b) $\tan 5 \mathrm{~A}$
c) $\tan 6 \mathrm{~A}$
d) None of these

16 Find the value of $\frac{\sin 3 A-\sin A}{\cos 3 A+\cos A}$
a) $\boldsymbol{\operatorname { t a n }} \mathrm{A}$
b) $\cos \mathrm{A}$
c) $\sin \mathrm{A}$
d) $\cot \mathrm{A}$

17 Find the value of $\frac{\sin 8 x+\sin 2 x}{\cos 2 x-\cos 8 x}$
a) $\tan 3 x$
b) $\cot 3 x$
c) $\sin 3 x$
d) $\cos 3 x$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
$18 \frac{\sin A+\sin 2 A+\sin 3 A+\sin 4 A}{\cos A+\cos 2 A+\cos 3 A+\cos 4 A}=$?
a) $\tan 2 \mathrm{~A}$
b) $\cot \left(\frac{5 A}{2}\right)$
c) $\tan \left(\frac{5 A}{2}\right)$
d) $\cot 2 \mathrm{~A}$

19 If $2 \cos 70^{\circ} \sin 50^{\circ}=\sin A-\sin B$, find angle A and B
a) $A=20^{\circ}, B=120^{\circ}$
b) $A=120^{\circ}, B=20^{0}$
c) $A=70^{\circ}, B=50^{\circ}$
d) $A=50^{\circ}, B=70^{\circ}$

20 If $\sin 80^{\circ}+\sin 50^{\circ}=2 \sin \alpha \cos \beta$, find α and β
a) $A=15^{0}, B=65^{0}$
b) $A=80^{\circ}, B=50^{\circ}$
c) $A=65^{\circ}, B=15^{0}$
d) None of these

21 Express $\cos 4 \theta+\cos 8 \theta$ as product
a) $2 \cos 6 \theta \cos 2 \theta$
b) $2 \cos 2 \theta \cos 6 \theta$
c) $2 \sin 4 \theta \sin 8 \theta$
d) None of these

22 Evaluate $\sin 50^{\circ}-\sin 70^{\circ}+\sin 10^{\circ}$
a) -1
b) 0
c) 1
d) None of these

23 Express $4 \cos 30^{\circ} \sin 20^{\circ}$ as the sum or difference of trigonometric ratios
a) $\left[\cos 50^{\circ}-\cos 10^{\circ}\right]$
b) $2\left[\sin 30^{\circ}-\sin 20^{\circ}\right]$
c) $2\left[\sin 50^{0}-\sin 10^{0}\right]$
d) None of these

24 Without using calculator, evaluate $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$
a) $\frac{3}{16}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{5}{16}$
d) $\frac{3}{2}$

25 Without using calculator, evaluate $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$
a) $\frac{3}{16}$
b) $\frac{\sqrt{3}}{2}$
c) $\frac{1}{16}$
d) $\frac{3}{2}$

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik

7. Inverse Trigonometric Ratios

Position in Question Paper

Total Marks-08

Q.4. c) 4-Marks.
Q.4. d) 4-Marks.

Descriptive Question

Definition:

If $-1 \leq x \leq 1$ and $=\sin \theta$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, then θ is called inverse sine of x and is written as $\theta=\sin ^{-1} x$.
This is read as "sine inverse x equals θ "

Examples: -

(i) $\sin 45^{\circ}=\frac{1}{\sqrt{2}} \quad \therefore \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{0}$ or $\frac{\pi}{4}$
(ii) $\sin 60^{\circ}=\frac{\sqrt{3}}{2} \quad \therefore \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}$ or $\frac{\pi}{3}$
(iii) $\tan 60^{\circ}=\sqrt{3}$
$\therefore \tan ^{-1}(\sqrt{3})=60^{0}$ or $\frac{\pi}{3}$
(iv) $\cos 60^{\circ}=\frac{1}{2} \quad \therefore \cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$ or $\frac{\pi}{3}$

Properties of inverse trigonometric functions:
Property 1:

$(i) \sin ^{-1}(\sin \theta)=\theta$	$(i) \sin \left(\sin ^{-1} x\right)=x$
$(i i) \cos ^{-1}(\cos \theta)=\theta$	$(i i) \cos \left(\cos ^{-1} x\right)=x$
$(i i i) \tan ^{-1}(\tan \theta)=\theta$	$(i i i) \tan \left(\tan ^{-1} x\right)=x$
$(i v) \cot ^{-1}(\cot \theta)=\theta$	$(i v) \cot \left(\cot ^{-1} x\right)=x$
$(v) \operatorname{cosec}^{-1}(\operatorname{cosec} \theta)=\theta$	$(v) \operatorname{cosec}\left(\operatorname{cosec}^{-1} x\right)=x$
$(v i) \sec ^{-1}(\sec \theta)=\theta$	$(v i) \sec \left(\sec ^{-1} x\right)=x$

Property 2:

$(i) \operatorname{cosec}^{-1}(x)=\sin ^{-1}\left(\frac{1}{x}\right)$	$(i v) \sin ^{-1}(x)=\operatorname{cosec}^{-1}\left(\frac{1}{x}\right)$
$(i i) \sec ^{-1}(x)=\cos ^{-1}\left(\frac{1}{x}\right)$	$(v) \cos ^{-1}(x)=\sec ^{-1}\left(\frac{1}{x}\right)$
$(i i i) \cot ^{-1}(x)=\tan ^{-1}\left(\frac{1}{x}\right)$	$(v i) \tan ^{-1}(x)=\cot ^{-1}\left(\frac{1}{x}\right)$

Property 3:

$(i) \sin ^{-1}(-x)=-\sin ^{-1}(x)$	$(i v) \operatorname{cosec}^{-1}(x)=-\operatorname{cosec}^{-1}(x)$
$(i i) \cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$	$(v) \sec ^{-1}(-x)=\pi-\sec ^{-1}(x)$
$(i i i) \tan ^{-1}(-x)=-\tan ^{-1}(x)$	$(v i) \cot ^{-1}(-x)=-\cot ^{-1}(x)$

Property 4:

(i) $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
(ii) $\operatorname{cosec}^{-1} x+\sec ^{-1} x=\frac{\pi}{2}$
(iii) $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$

Property 5:

(i)If $x>0, y>0$ and $x y<1$, then
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left[\frac{x+y}{1-x y}\right]$
(ii)If $x>0, y>0$ and $x y>1$, then
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left[\frac{x+y}{1-x y}\right]+\pi$
(iii)If $x>0, y>0$, then
$\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left[\frac{x-y}{1+x y}\right]$

Property 6:

$2 \tan ^{-1} x=\sin ^{-1}\left[\frac{2 x}{1+x^{2}}\right]=\cos ^{-1}\left[\frac{1-x^{2}}{1+x^{2}}\right]=\tan ^{-1}\left[\frac{2 x}{1-x^{2}}\right]$

Property 7:

(i) $\sin ^{-1} x$	$=\cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\tan ^{-1}\left[\frac{x}{\sqrt{1-x^{2}}}\right]$
	$=\sec ^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)=\cot ^{-1}\left[\frac{\sqrt{1-x^{2}}}{x}\right]=\operatorname{cosec}^{-1}\left(\frac{1}{x}\right)$
(ii) $\cos ^{-1} x$	$=\sin ^{-1}\left(\sqrt{1-x^{2}}\right)=\tan ^{-1}\left[\frac{x}{\sqrt{1-x^{2}}}\right]$
	$=\operatorname{cosec}^{-1}\left(\frac{1}{\sqrt{1-x^{2}}}\right)=\cot ^{-1}\left[\frac{\sqrt{1-x^{2}}}{x}\right]=\sec ^{-1}\left(\frac{1}{x}\right)$

Property 8:

(i) $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right]$
(ii) $\sin ^{-1} x-\sin ^{-1} y=\sin ^{-1}\left[x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}\right]$
(iii) $\cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left[x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]$
(iv) $\cos ^{-1} x-\cos ^{-1} y=\cos ^{-1}\left[x y+\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right]$

Q.1) If $\tan ^{-1}(1)+\tan ^{-1}(x)=0$, find the value of x . (W-13, $\left.\mathbf{S}-\mathbf{1 7}\right)$
Q.2) Show that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$. (S-17, S-19)
Q.3) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$. (S-17, W-17, W-18)
Q.4) Prove that $\sin ^{-1}\left(\frac{3}{5}\right)-\sin ^{-1}\left(\frac{8}{17}\right)=\cos ^{-1}\left(\frac{84}{85}\right)$.
Q.5)

$$
\begin{equation*}
\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4} . \tag{S-19}
\end{equation*}
$$

Q.6) Show that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$.
Q.7) Prove that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$.
(S-16, W-19)
Q.8) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{27}{11}\right)$. (S-15, W-15)
Q.9) Prove that $2 \cot ^{-1}(3)+\operatorname{cosce}^{-1}\left(\frac{5}{4}\right)=\frac{\pi}{2}$.
Q.10) Prove that $\sin ^{-1}\left(\frac{3}{5}\right)-\cos ^{-1}\left(\frac{5}{13}\right)=\cos ^{-1}\left(\frac{56}{65}\right)$.
Q.11) Prove that $\sin ^{-1}\left(-\frac{1}{2}\right)+\cos ^{-1}\left(-\frac{1}{2}\right)=\tan ^{-1}(\infty)$ (W-09)
Q.12) Prove that $2 \tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{3}{4}\right)(\mathbf{S}-\mathbf{0 7})$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
Q.13) Prove that $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\cot ^{-1}(2)(\mathbf{S - 1 8})$
Q.14) Prove that $\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{7}{24}\right)=\cot ^{-1}(2)$
Q.15) Prove that

$$
\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)=\tan ^{-1}\left(\frac{2}{9}\right)=\cot ^{-1}\left(\frac{9}{2}\right)(\mathbf{W}-12, S-13, S-14, \mathbf{W}-18)
$$

Q.16) Prove that $\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)=\sin ^{-1}\left(\frac{56}{65}\right) \quad(\mathbf{W}-\mathbf{1 2}, \mathbf{W}$ 18)
Q.17) Prove that $\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{8}{17}\right)=\sin ^{-1}\left(\frac{84}{85}\right)$.
Q.18) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)-\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{63}{65}\right)$.
Q.19) Prove that $\cos ^{-1}\left(\frac{4}{5}\right)-\sin ^{-1}\left(\frac{5}{13}\right)=\cos ^{-1}\left(\frac{63}{65}\right)$.
(S-11, S-13)

MCQ Question

(Total number of Question=Marks*3=8*3=24)
Note: Correct answer is marked with bold.

1. The value of $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{7}{8}\right)$ is
a) $\tan ^{-1}\left(\frac{7}{8}\right)$
b) $\cot ^{-1}(15)$
c) $\tan ^{-1}(15)$
d) $\tan ^{-1}\left(\frac{25}{24}\right)$
2. The value of $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{7}\right)$ is
a) π
b) $\frac{\pi}{2}$
c) $\frac{3 \pi}{4}$
d) $\frac{\pi}{4}$
3. If $\tan ^{-1}(\cot \theta)=2 \theta$, then θ is equal to
a) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
b) $\frac{\pi}{4}$
d) None of these
4. If $\tan ^{-1} 3+\tan ^{-1} x=\tan ^{-1} 8$, then $x=$?
a) 5
b) $\frac{1}{5}$
c) $\frac{5}{14}$
d) $\frac{14}{5}$
5. $\sin ^{-1}\left(\frac{-1}{2}\right)$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)
a) $\frac{\pi}{3}$
b) $\frac{-\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{-\pi}{6}$
6. $\cos ^{-1}\left(\frac{1}{2}\right)$
a) $\frac{-\pi}{3}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{2}$
d) $\frac{2 \pi}{3}$
7. $\tan ^{-1}(\sqrt{3})$
a) $\frac{\pi}{6}$
b) $\frac{\pi}{3}$
c) $\frac{2 \pi}{3}$
d) $\frac{5 \pi}{6}$
8. $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
9. $\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$
a) $\frac{2 \pi}{3}$
b) $\frac{3 \pi}{4}$
c) $\frac{\pi}{2}$
d) 6π
10. $\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right)$ is equal to
a) $\frac{\pi}{4}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{3}$
d) $\frac{2 \pi}{3}$
11. $\sin ^{-1}\left\{2 \cos ^{-1}\left(\frac{-3}{5}\right)\right\}$
a) $\frac{6}{25}$
b) $\frac{24}{25}$
c) $\frac{4}{5}$
d) $\frac{-24}{25}$
12. $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{8}\right)$
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) $\frac{3 \pi}{4}$
13. If $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} A$, then A is equal to
a) $x-y$
b) $x+y$
c) $\frac{x-y}{1+x y}$
d) $\frac{x+y}{1-x y}$
14. The value of $\sin \left[\cos ^{-1}\left(\frac{7}{25}\right)\right]$ is
a) $\frac{25}{24}$
b) $\frac{25}{7}$
c) $\frac{24}{25}$
d) $\frac{7}{24}$
15. $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=$
a) $\frac{\pi}{4}$
b) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
d) π
16. $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$ equal to
a) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
b) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{2}\right)$
c) $\frac{1}{2} \tan ^{-1}\left(\frac{3}{5}\right)$
d) $\tan ^{-1}\left(\frac{1}{2}\right)$
17. $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=$?
a) $\cos ^{-1}\left(\frac{33}{65}\right)$
b) $\cos ^{-1}\left(\frac{36}{65}\right)$
c) $\sin ^{-1}\left(\frac{33}{65}\right)$
d) None of these
18. $\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{13}\right)$ equal to
a) $\cos ^{-1}\left(\frac{2}{9}\right)$
b) $\cos ^{-1}\left(\frac{9}{2}\right)$
c) $\sin ^{-1}\left(\frac{2}{9}\right)$
d) None of these
19. $\sin ^{-1}\left(\frac{3}{5}\right)-\sin ^{-1}\left(\frac{8}{17}\right)=$?
a) $\cos ^{-1}\left(\frac{84}{85}\right)$
b) $\cos ^{-1}\left(\frac{85}{84}\right)$
c) $\sin ^{-1}\left(\frac{87}{84}\right)$
d) None of these
20. $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)$ equal to
a) $\frac{\pi}{3}$
b) $\frac{\pi}{4}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
21. $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=$?
a) π
b) $\frac{\pi}{6}$
c) $\frac{\pi}{2}$
d) $\frac{\pi}{4}$
22. $\sin ^{-1}\left(\frac{3}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=$?
a) $\sin ^{-1}\left(\frac{56}{65}\right)$
b) $\cos ^{-1}\left(\frac{53}{65}\right)$
c) $\cos ^{-1}\left(\frac{43}{65}\right)$
d) None of these
23. $\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{3}{5}\right)-\tan ^{-1}\left(\frac{8}{19}\right)=$?
a) π
b) $\frac{\pi}{2}$
c) $\frac{\pi}{4}$
d) None of these
24. $\sin ^{-1}\left(\frac{4}{5}\right)+\sin ^{-1}\left(\frac{8}{17}\right)=$?
a) $\sin ^{-1}\left(\frac{84}{85}\right)$
b) $\cos ^{-1}\left(\frac{75}{85}\right)$
c) $\sin ^{-1}\left(\frac{43}{85}\right)$
d) None of these

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

Q.5. a. i) 3-Marks.
Q.5. a. ii) 3-Marks.
Q.5. b. i) 3-Marks.
Q.5. b. ii) 3-Marks.

Descriptive Question

Inclination of a line: -

The smallest non-negative angle θ made by a line with positive direction of Xaxis is called the inclination of the line.

Slope of a line: -

I) The slope or gradient of a line is defined as the tangent ratio of its inclination provided that the line is not parallel to Y -axis. It is denoted by m .
$m=\tan \theta$
II) Slope of a line passing through two points:

Slope of a line passing through two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
III) Slope of a general line ax+by+c=0 is
$m=-\frac{a}{b}$

Standard Forms of Equation of a Line:

1) Slope-Point Form: -

Equation of a line passing through the point $A\left(x_{1}, y_{1}\right)$ and having slope m is
$y-y_{1}=m\left(x-x_{1}\right)$
2) Slope-Intercept Form: -

Equation of a line having slope m and Y intercept C is $y=m x+c$
3) Two-Point Form: -

Equation of a line passing through two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

$$
\frac{y-y_{1}}{y_{1}-y_{2}}=\frac{x-x_{1}}{x_{1}-x_{2}}
$$

4) Double Intercept Form: -

Equation of a line having X-intercept ' a ' and Y-intercept ' b ' is $\frac{x}{a}+\frac{y}{b}=1$
5) Parametric Form: -

Equation of a line in Parametric Form is
$\frac{y-y_{1}}{\sin \theta}=\frac{x-x_{1}}{\cos \theta}$
6) Normal Form: -

Equation of a line in Normal Form is

$x \cos \alpha+y \sin \alpha=p$
Where $\mathrm{p}=$ Length of perpendicular from origin.
$\alpha=$ angle made by perpendicular with X -axis.
Q.1) Find the equation of line passing through point $(2,3)$ and having slope 5 units. (W-19)
Q.2) Find the equation of line passing through (1,7) and having slope 2 units. (S.Q.P, S-19)
Q.3) Find the equation of straight line passes through the points $(3,5)$ and $(4,6)$. (W-17)
Q.4) Find the equation of straight line passes through the points $(-4,6)$ and $(8,-3) . \quad(\mathbf{S}-\mathbf{1 4}, \mathbf{W}-\mathbf{1 8})$
Q.5) Find the equation of line passing through $(3,-4)$ and having slope $\frac{3}{2}$. (S-18)
Q.6) Find the intercepts of the line $2 x+3 y=6$ on both the axes. (W-13)
Q.7) $2 x+3 y+7=0$ and $2 x+3 y-13=0$ are two straight lines. Are they parallel to each other? (W-12)
Q.8) Prove that the lines $3 x-2 y+6=0$ and $2 x+3 y-1=0$ are perpendicular to each other. (W-12)
Q.9) Find the value of k if the lines $k x-6 y=9$ and $6 x+5 y=13$ are perpendicular to each other. (W-11)
Q.10) Find P if the lines $3 x+4 P y+8=0$ and $3 P y-9 x+10=0$ are perpendicular to each other. (S-17)
Q.11) Find the equation of line passing through the point $(4,5)$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
and perpendicular to the line $7 x-5 y=420$. (S.Q.P, S-19)
Q.12) Find the equation of line passing through the point $(3,4)$ and perpendicular to the line $2 x-4 y+5=0 .(\mathbf{S - 1 8})$
Q.13) Find the equations of the lines passing through the point $(6,5)$ and parallel to the line having intercepts 2 and 4 on X and Y axis respectively. (S-15)
Q.14) Find the equation of the line parallel to $3 x-2 y+5=0$ and passing through the point $(5,-6)(\mathbf{S}-10)$
Q.15) Find the equation of line passing through the point $(3,4)$ and perpendicular to the line $3 x+2 y+5=0$. $(\mathbf{W}-\mathbf{1 3})$
Q.16) Find the equation of the line passing through the point $(2,3)$ and perpendicular to the line $3 x-5 y=6(\mathbf{W}-19)$
Q.17) Find the equation of the line whose intercept on the X axis is double that on the Y - axis and passing through the point $\quad(4,1)$ (S-17)
Q.18) Find equation of lines passing through $(12,-4)$ and whose sum of the intercepts is equal to 10 . (W-15)
Q.19) Find the equation of straight line which is perpendicular bisector of the line joining the points $A(8,-1)$ and $B(6,3)(S-17)$
Q.20) Find the equation of the perpendicular bisector of the line joining the points A $(-2,3)$ and $B(8,-1)(\mathbf{S - 1 2}, \mathbf{W}-13)$
Q.21) Find the equation of the perpendicular bisector of the line joining the points $\mathrm{A}(4,8)$ and $\mathrm{B}(-2,6)(\mathbf{W}-09)$

Intersection of two lines: -

Q.22) Find the equation of the line through the point of intersectionof lines $4 x+$ $3 y=8$ and $x+y=1$ and parallel to the line $5 x-7 y=3 .(\mathbf{S - 1 7} \mathbf{W} \mathbf{W} \mathbf{- 1 7})$
Q.23) Find the equation of line passing through the point $(2,5)$ and through the intersection of the lines $x+y=0$ and $2 x-y=9 . \quad(\mathbf{W}-\mathbf{1 6}, \mathbf{W}-18)$
Q.24) Find the equation of the line through the point of intersection of lines $2 x+3 y=13$ and $5 x-y-7=0$ and perpendicular to the line $3 x-2 y+7=0 . \quad(\mathbf{W}-16)$
Q.25) Find the equation of the line through the point of intersectionof lines $2 x+$ $y+6=0$ and $3 x+5 y-15=0$ and parallel to the line $5 x+6 y+3=0$. ($\mathbf{W}-10$)
Q.26) Find the equation of the line passing through the point of intersection of lines

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
$x+y=0$ and $2 x-y=9$ and through the point $(4,5)(\mathbf{W}-16, \mathbf{W}-18)$
Q.27) Find the equation of the line passing through the point of intersection of lines $2 x+3 y=13$ and $5 x-y=7$ and through the point $(1,-1)(\mathbf{S}-11)$

Angle between two lines: -

If θ is the acute angle between the lines with slopes m_{1} and m_{2}, then $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
Q.28) Find the acute angle between the lines $y=5 x+6$ and $y=x .(S . Q . P, S-19)$
Q.29) Find the acute angle between the lines $2 x+3 y+5=0$ and $x-2 y-4=$ 0 . (W-12, W-17)
Q.30) Find the acute angle between the lines $3 x+2 y+4=0$ and $2 x-3 y-7=$ 0. (W-18)
Q.31) Find the acute angle between the lines $3 x-y=4$ and $2 x+y=3$. (W-11, S-18, W-19)
Q.32) Find the acute angle between the lines $2 y+x=1$ and $x+3 y=6 .(\mathbf{S}-\mathbf{0 8}$, W-08)
Q.33) Find the acute angle between the lines $2 x+3 y=13$ and $2 x-5 y+7=0$. ($\mathbf{W}-14, S-16$)
Q.34) Find the acute angle between the lines whose slopes are $\sqrt{3}$ and $\frac{1}{\sqrt{3}}(\mathbf{W}-\mathbf{1 3})$

Perpendicular distance of a point from the line: -

If p is the length of the perpendicular from a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ then $p=\left|\frac{a x_{1+b y_{1+}}}{\sqrt{a^{2}+b^{2}}}\right|$
Q.35) Find the length of perpendicular from the point $P(2,3)$ on the line $4 x-6 y-3=0 .(\mathbf{S}-\mathbf{1 9})$
Q.36) Find the length of perpendicular from the point $P(5,4)$ on the line $2 x+y=$ 34. (S-18)
Q.37) Find the length of perpendicular from the point $P(2,5)$ on the line $2 x+3 y-6=0 .(\mathbf{W}-19)$

Distance between two parallel lines: -

The distance between two parallel lines $a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is given by

$$
d=\left|\frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right|
$$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.38) Find the distance between the parallel lines $3 x-y+7=0$ and $3 x-y+16=0 . \quad(\mathbf{W}-17)$
Q.39) Find the distance between the lines $3 x+2 y=5$ and $6 x+2 y=6(\mathbf{S - 1 6})$
Q.40) Find the perpendicular distance between the parallel lines $5 x-12 y+1=0$ and $10 x=24 y+1(\mathbf{W}-\mathbf{1 3}, \mathbf{S}-\mathbf{1 4})$

MCQ Question

(Total number of Question=Marks*3=12*3=36)
Note: Correct answer is marked with bold.

1. The equation of the line joining the points $(-1,3)$ and $(4,-2)$ is
a) $x+y-1=0$
b) $x+y+1=0$
c) $x+y+2=0$
d) $x+y-2=0$
2. The equation of the line through $(3,4)$ and parallel to the line $y=3 x+5$ is
a) $3 x-y-5=0$
b) $3 x+y-5=0$
c) $3 x+y+5=0$
d) $3 x-y+5=0$
3. The equation of the straight line passing through the point $(1,2)$ and parallel to the $y=3 x+1$ is
a) $y+2=x+1$
b) $y+2=3 x(x+1)$
c) $\mathbf{y - 2}=3 \mathrm{x}(\mathrm{x}-1)$
d) $y-2=x-1$
4. The equation of the line passing through the point $(2,3)$ with slope 2 is
a) $2 x+y-1=0$
b) $2 x-y+1=0$
c) $\mathbf{2 x}-\mathbf{y}-\mathbf{1}=\mathbf{0}$
d) $2 x+y+1=0$
5. The angle between the lines $x-2 y=5$ and $y-2 x=5$ is
a) $\tan ^{-1}\left(\frac{1}{4}\right)$
b) $\tan ^{-1}\left(\frac{3}{5}\right)$
c) $\tan ^{-1}\left(\frac{5}{4}\right)$
d) $\tan ^{-1}\left(\frac{2}{3}\right)$
6. The equation of the line through the points $(1,5)$ and $(2,3)$ is
a) $2 x-y-7=0$
b) $2 x+y+7=0$
c) $\mathbf{2 x}+\mathbf{y}-\mathbf{7}=\mathbf{0}$
d) $x-2 y-7=0$
7. Two lines are perpendicular if the product of their slopes is
a) 0
c) -1
b) 1
d) None of these
8. Y-intercept of the line $4 x-3 y+15=0$ is
a) $\frac{-15}{4}$
b) $\frac{15}{4}$
c) -5

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
d) 5
9. Find the point of intersection of lines $x+y=0$ and $2 x-y=9$
a) $(3,-3)$
b) $(-3,-3)$
c) $(3,3)$
d) $(-3,3)$
10. The equation of the straight line passing through the point $(3,2)$ and perpendicular to the line $y=x$ is
a) $x-y=5$
b) $x+y=5$
c) $x+y=1$
d) $x-y=1$
11. Equation of the line passing through $(1,2)$ and parallel to the line $y=3 x-1$ is
a) $y+2=x+1$
b) $y+2=3(x+1)$
c) $y-2=3(x-1)$
d) $y-2=x-1$
12. Find the distance between lines $3 x+2 y=5$ and $6 x+4 y=6$
a) 0.981
b) 0.582
c) 0.435
d) 0.555
13. Find the acute angle between the lines $3 x-y=4$ and $2 x+y=3$
a) $\frac{\pi}{4}$
b) $\frac{\pi}{3}$
c) $\frac{\pi}{6}$
d) $\frac{\pi}{2}$
14. Find the point of intersection of lines $4 x+3 y=8$ and $x+y=1$
a) $(-5,-4)$
b) $(-5,4)$
c) $(5,-4)$
d) $(5,4)$
15. Find the equation of the line passing through $(3,-4)$ and having slope $\frac{3}{2}$
a) $3 x-2 y-17=0$
b) $2 x-3 y-17=0$
c) $3 x-2 y-17=0$
d) $2 x+3 y-17=0$
16. Equation of the line passing through $(3,4)$ and perpendicular to the line $2 x-4 y+5=0$
a) $2 x+y-10=0$
c) $2 x-4 y+15=0$
b) $3 x-4 y+10=0$
d) None of these
17. Find the length of the perpendicular from the point $(5,4)$ on the straight line $2 x+3 y=34$
a) 5.29
b) 7.56
c) 8.94
d) 4.32
18. Find the acute angle between the lines $3 x+2 y+4=0$ and $2 x-3 y-7=0$
a) $\frac{\pi}{2}$
c) $\frac{\pi}{3}$
b) $\frac{\pi}{6}$
d) None of these
19. Find the equation of straight line passes through the points $(-4,6)$ and $(8,-3)$
a) $3 x-4 y+12=0$
b) $3 x+4 y+12=0$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
c) $3 x+4 y-12=0$
d) None of these
20. Find the acute angle between the lines $y=5 x+6$ and $y=x$
a) $\tan ^{-1}\left(\frac{4}{5}\right)$
c) $\tan ^{-1}\left(\frac{2}{5}\right)$
b) $\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{2}{3}\right)$
d) None of these
21. Find the length of the perpendicular from the point $(2,3)$ on the line $4 x-6 y-3=0$
a) $\frac{13}{\sqrt{62}}$
b) $\frac{13}{\sqrt{65}}$
c) $\frac{13}{\sqrt{55}}$
d) $\frac{13}{\sqrt{52}}$
22. Find equation of line passing through $(4,5)$ and parallel to $2 x-3 y-5=0$
a) $2 x-3 y+7=0$
c) $2 x-3 y-7=0$
b) $2 x+3 y+7=0$
d) None of these
23. Find the distance between two parallel lines $3 x-y+7=0$ and $3 x-y+16=0$
a) $\frac{9}{\sqrt{10}}$
b) $\frac{23}{\sqrt{10}}$
c) $\frac{9}{\sqrt{8}}$
d) $\frac{23}{\sqrt{8}}$
24. Find the acute angle between the lines $3 x-4 y=420$ and $4 x+3 y=420$
a) $\frac{\pi}{6}$
c) $\frac{\pi}{6}$
b) $\frac{\pi}{2}$
d) None of these
25. Find the equation of a line passing through $(2,5)$ and the point of intersection of $x+y=0$ and $2 x-y=9$
a) $\mathbf{8 x}+\mathbf{y}=\mathbf{2 1}$
b) $8 x-y=21$
c) $x+8 y=21$
d) $x-8 y=21$
26. Find the X-intercept of the line $2 x+3 y=6$
a) 3
b) 2
c) -3
d) -2
27. Find the value of ' k ' if the lines $k x-6 y=9$ and $6 x+5 y=13$ are perpendicular to each other
a) -5
b) $\frac{1}{5}$
c) 5
d) $\frac{-1}{5}$
28. Find the equation of the line having X-intercept 2 and Y-intercept 4
a) $2 x-y=4$
b) $2 x+y=4$
c) $x+2 y=4$
d) $x-2 y=4$
29. Find the equation of a line whose perpendicular distance from origin is 3

And inclination of perpendicular is 30°
a) $\sqrt{3} x-y=6$
b) $x+\sqrt{3} y=6$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
c) $\sqrt{3} x+y=6$
d) None of these
30. Find the equation of straight line passing through $(5,6)$ and making angle 150° with x -axis.
a) $x+\sqrt{3} y=5+6 \sqrt{3}$
c) $x-y=5-6 \sqrt{3}$
b) $x-\sqrt{3} y=5-6 \sqrt{3}$
d) None of these
31. Find K if the slope of a line passing through the points $(3,-5)$ and $(K,-1)$ is $\frac{1}{3}$
a) -15
c) 10
b) 15
d) None of these
32. Find the slope of a line passing through the points $(1,2)$ and $(3,3)$
a) 2
b) $\frac{-1}{2}$
c) $\frac{1}{2}$
d) -2
33. Find the Y-intercept of a line $\frac{x}{4}-\frac{y}{3}=2$
a) -6
c) 24
b) 8
d) None of these
34. Slope of X-axis is
a) Not defined
c) 1
b) 0
d) -1
35. Slope of Y-axis is
a) 1
c) 0
b) -1
d) Not defined
36. Find the acute angle between the lines $2 x+y-1=0$ and $3 x+y+4=0$
a) $\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{1}{7}\right)$
c) $\tan ^{-1}\left(\frac{4}{9}\right)$
b) $\tan ^{-1}\left(\frac{5}{7}\right)$
d) None of these

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

9. Mensuration

Position in Question Paper
Total Marks-10
Q.1. d) 2-Marks.
Q.1. e) 2-Marks.
Q.5. c. i) 3-Marks.
Q.5. c. ii) 3-Marks.

Descriptive Question

Mensuration:

Mensuration is a branch of mathematics, which includes the measurement of lengths of lines, areas of surfaces and volumes of solids.
Mensuration is divided into two groups:

1) Mensuration of Plane Figures:

It deals with the measurement of sides, perimeters, areas of plane figures such as triangles, quadrilaterals, polygons, circles etc.

2) Mensuration of Solid Figures:

A figure bounded by one or more surfaces is said to a solid figure.
It deals with the measurement of areas of the surfaces and volumes of the solid figures such as cuboids, sphere, cone and cylinder.

1) Mensuration of Plane Figures:

Sr. No.	Shape	Area	Perimeter
1)	Triangle	$\begin{aligned} & \text { Area of triangle }= \\ & \frac{1}{2} \text { XbaseXheight } \\ & =\frac{1}{2} X b X h \end{aligned}$	Perimeter of triangle $=$ Sum of all sides
2)	Right Angle Triangle	Area of right-angle $\text { triangle }=\frac{1}{2} X a X b$	Perimeter of right-angle triangle $=a+b+c$
3)	Isosceles Triangle a	Area of isosceles $\text { triangle }=\frac{a}{4} \sqrt{4 b^{2}-a^{2}}$	Perimeter of isosceles triangle $=a+2 b$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

4)	Equilateral Triangle	Area of equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$	Perimeter of equilateral triangle $=3 \mathrm{a}$
5)	Rectangle RECTANGLE	Area of rectangle $=$ (length) x (width)	Perimeter of rectangle $=$ 2(length + width)
6)	Square \square	Area of square $=$ $\left(\right.$ side) ${ }^{2}$	Perimeter of square $=4 \mathrm{X}$ Side
7)	Parallelogram	Area of a parallelogram $=$ Base x Height	Perimeter of parallelogram $\begin{aligned} & = \\ & 2(\mathrm{~b}+\mathrm{h}) \end{aligned}$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
8)
Q.1) The area of rectangle with one side 8 cm is $172 \mathrm{~cm}^{2}$. Find length of the other side. (S.Q.P)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.2) A square grassy plot is of 100 metre. It has a gravel path 10 metres wide all round it on the inside. Find the area of the path. (S.Q.P., W-18, S-19)
Q.3) Find the area of a rhombus whose diagonals are of lenghts 10 cm and 8.2 cm . ($\mathbf{W}-17$)
Q.4) Find the area of rhombus whose diagonals are 6 cm and 9 cm . (W-18)
Q.5) The area of a rectangular courtyard is 3000 sq . m . Its sides are in the ratio 6: 5. Find the perimeter of courtyard. ($\mathbf{W}-\mathbf{1 7}, \mathbf{S}-19$)
Q.6) The length of one side of the rectangle is twice the length of its adjacent side. If the perimeter of rectangle is 60 cms , find the area of the rectangle.
Q.7) Find the area of ring between two concentric circles whose circumferences are 75 cm and 55 cm .
Q.8) Find the area of a trapezium whose parallel sides are 10 cm and 8 cm , where the perpendicular between the sides is 4 cm .
Q.9) The area of a parallelogram is 24 square centimeter and the base is 4 centimeters. Find the height.
Q.10) Find the area of a triangle whose sides are $50 \mathrm{~m}, 78 \mathrm{~m}, 112 \mathrm{~m}$ respectively.
Q.11) The length and breadth of a rectangle are in the ratio 9:5. If its area is $720 \mathrm{~m}^{2}$, find its perimeter.
Q.12) The perimeter of a rhombus is 146 cm and one of its diagonals is 55 cm . Find the other diagonal and the area of the rhombus.
Q.13) A 5100 sq.m trapezium has the perpendicular distance between the two parallel sides is 60 m . If one of the parallel sides be 40 m then find the length of the other parallel side.
Q.14) The radius of a wheel is 42 cm . How many revolutions will it make in going 26.4 km ?
Q.15) The circumference of a circular garden is 1012 m . Find the area of outsider road of 3.5 m width runs around it. Calculate the area of this road and the cost of gravelling the road at Rs. 32 per 100 sqm.
Q.16) Find the area between two concentric circles whose radii are 4 m and 2 m .
Q.17) A perimeter of rhombus is 200 cm and of its diagonal is 60 cm . Find the other diagonal.
Q.18) The area of a right-angled triangle is 600 sq. cm and one of the sides containing right angle is 30 cm . Find the hypotenuse.
Q.19) A flooring tile has the shape of a parallelogram whose base is 24 cm and the

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
corresponding height is 10 cm . How many such tiles are required to cover a floor of area $1080 \mathrm{~m}^{2}$?
Q.20) The area of a field in trapezium shape is $480 \mathrm{~m}^{2}$. The distance between two parallel sides is 15 m and one of the parallel sides is 20 m . Find the other side.
Q.21) The floor of a hall consists of 3000 tiles which are rhombus shaped having diagonals 45 cm and 30 cm in length. Find the total cost of polishing the floor at the rate of Rs. 4 per square meter.
Q.22) The base of a triangular field is three times its corresponding height. If the cost of ploughing the field at the rate of Rs $15 / \mathrm{m}^{2}$ is 20250 . Find the base and the corresponding height of the field.

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

2)	Mensuration of Solid Figures:		
Sr. No.	Shape	Volume (Cubic units)	Surface area
1)	Cuboid	Volume of Cuboid $=$ length X breadth $X h$ $=l X b X h$	Surface Area = $2[l b+b h+l h]$
2)	Cube	$\begin{aligned} & \text { Volume of Cube }= \\ & (\text { length of edge })^{3} \\ & =a^{3} \end{aligned}$	Surface Area $=6 a^{2}$
3)	Cone	Volume of Cone $=$ $\frac{1}{3} \pi r^{2} h$	i) Curved Surface Area of a Cone $=\pi r l$ ii) Whole Surface Area of a $\text { Cone }=\pi r(l+r)$
4)	Cylinder	Volume of a Cylinder	i) Curved Surface Area of

Maratha Vidya Prasarak Samaj's
Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.

		$\begin{aligned} & =\text { area of base circle } \\ & \mathrm{X} \text { height } \\ & =\pi r^{2} h \end{aligned}$	$\text { Cylinder }=2 \pi r h$ ii) Total Surface Area of $\text { Cylinder }=2 \pi r(r+h)$
5)	Sphere	Volume of Sphere $=$ $\frac{4}{3} \pi r^{3}$	Surface Area of Sphere = $4 \pi r^{2}$
6)	Semi sphere	Volume of Semi sphere $=\frac{2}{3} \pi r^{3}$	Surface Area of Semi sphere $=2 \pi r^{2}$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.23) A cone has a circular base of radius 10 cm and slant height 30 cm . Calculate the surface area. (S.Q.P)
Q.24) If the volume of a sphere is $\frac{4 \pi}{3} \mathrm{~cm}^{3}$. Find its surface area. (W-17)
Q.25) The length, breadth and height of a cuboid are $8 \mathrm{~cm}, 11 \mathrm{~cm}$ and 15 cm respectively. Find the total surface area. (W-18)
Q.26) The volume of cube is $1000 \mathrm{~cm}^{3}$. Find its total surface area.
(W-18)
Q.27) Find the surface area of a cuboid of dimensions $26 \mathrm{cms}, 20 \mathrm{cms}$ and 12 cms . (S-18)
Q.28) Find the capacity of a cylindrical water tank whose radius is 2.1 m and length is 5 m . (S-18)
Q.29) The volume of a sphere is $\frac{88}{21}$ cubic meters. Find its surface area.
Q.30) Find the length of the longest pole that can be placed in a room 12 m long, 9 m broad and 8 m high. (W-19)
Q.31) Find the volume of the sphere whose surface area is $616 \mathrm{sq} . \mathrm{m}$. (W-19)
Q.32) A cylinder has hemispherical ends having radius 14 cm and height 50 cm . Find the total surface area. (W-19)
Q.33) A solid right circular cone of radius 2 m and height 27 m is melted and recasted into a sphere. Find the volume and surface area of a sphere. (W-19)
Q.34) The internal measures of a cuboidal room are 12 m X 8 m X 4 m . Find the total cost of whitewashing all four walls of a room, if the cost of whitewashing is Rs. 8 Per m^{2}. What will be the cost of whitewashing if the ceiling of the room is also whitewashed? (S.Q.P)
Q.35) A circuis tent is cylindrial to a height of 3 m and conical above it. If its diameter is 105 m and slant height of cone is 5 m , calculate the area of total canvas required. (W-17)
Q.36) External dimensions of a wooden cuboid are 30 cm X 25 cm X 20 cm . If the thickness of wood is 2 cm all round. Find the volume of the wood contained in the cuboid formed. (S-18)
Q.37) A metal strip having sides 17×7 X 5 is melted down and minted into coins each of diameter 1.4 cm and thickness 0.08 cm . Assuming no wastage, how many coins can be minted? (S-19)
Q.38) Circumference of the base of a cylinder is 132 cm and its height 25 cm . Find the volume of the cylinder.

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.39) Find the curved surface area and total surface area of a right circular cylinder whose height is 15 cm and the radius of the base is 7 cm .
Q.40) Find the height of a cylinder whose radius is 7 cm and the total surface area is $968 \mathrm{~cm}^{2}$.
Q.41) The curved surface area of a cone is $4070 \mathrm{~cm}^{2}$ and its diameter is 70 cm . What is its slant height?
Q.42) If the length, breadth and height of a cuboid are $5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 4 cm . Find its total surface area and lateral surface area.
Q.43) If the length of the side of the cube is 6 cm , then find its total surface area and lateral surface area.
Q.44) A cube of 1.7 litres volume will have each edge closest to?
Q.45) The surface area of a cube is $486 \mathrm{~cm}^{2}$ and melted into small cubes, each of $54 \mathrm{~mm}^{2}$ surface area. Find the number of small cubes.
Q.46) The length, breadth and depth of a pond are $20.5 \mathrm{~m}, 16 \mathrm{~m}$ and 8 m respectively. Find the capacity of the pond in litres.
Q.47) The dimensions of a brick are $24 \mathrm{~cm} \times 12 \mathrm{~cm} \times 8 \mathrm{~cm}$. How many such bricks will be required to build a wall of 20 m length, 48 cm breadth and 6 m height?
Q.48) The volume of a container is $1440 \mathrm{~m}^{3}$. The length and breadth of the container are 15 m and 8 m respectively. Find its height
Q.49) Find the volume of a cone, if radius is 4 cm and height is 9 cm .
Q.50) Find the volume of a cone which has the base radius of 8 cm and slant height (l) of 13 cm .
Q.51) Find the volume of a cone the radius of whose base is 21 cm and height is 28 cm.
Q.52) If the height of a cone is 15 cm and its volume is $770 \mathrm{cu} . \mathrm{cm}$; find the radius of its base.
Q.53) A right triangle ABC with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm . Find the volume of the solid so obtained.
Q.54) Calculate the volume of a cylinder where: a) the area of the base is $30 \mathrm{~cm}^{2}$ and the height is 6 cm . (b) the radius of the base is 14 cm and the height is 10 cm .
Q.55) A cylinder has a radius of 3 cm and a height of 10 cm . Find its total surface area and its volume.
Q.56) The radius of a cylinder is 7 cm , while its volume is 1.54 L . What is the height of the cylinder?

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.57) A cylindrical container with no lid has inner radius 20 cm and depth 10 cm . It needs to be coated on the inner walls with a paint which costs INR $6000 / \mathrm{m}^{2}$ of area. Find the cost of this paint job.
Q.58) If the lateral surface of the cylinder is $500 \mathrm{~cm}^{2}$ and its height is 10 cm , then find the radius of its base.
Q.59) A rectangular block of metal has a dimension of $21 \mathrm{~cm}, 77 \mathrm{~cm}$ and 24 cm . The block has been melted into a sphere. Find the radius of the sphere.
Q.60) The surface area of a solid sphere is 1254 square feet. Find the volume of the solid sphere.
Q.61) A lead bar $10 \mathrm{~cm} \times 5 \mathrm{~cm} \times 4 \mathrm{~cm}$ is melted an made into 5 equal spherical bullets. Find the diameter and surface area of the bullet.

MCQ Question

(Total number of Question=Marks* $3=10 * 3=30$)
Note: Correct answer is marked with bold.

1. What is the area of a parallelogram that has a height of 7 m and a base of 4 m
a) 11 sq.m
c) 14 sq.m
b) $\mathbf{2 8} \mathbf{~ s q} \cdot \mathrm{m}$
d) None of these
2. The area of a rhombus whose diagonals are of lengths 10 cm and 8.2 cm is
a) $41 \mathrm{sq.cm}$
b) $82 \mathrm{sq.cm}$
c) $210 \mathrm{sq} . \mathrm{cm}$
d) 420 sq. cm
3. The area of a trapezium is $480 \mathrm{~cm}^{2}$, the distance between two parallel sides is 15 cm and one of the parallel sides is 20 cm . the other parallel side is
a) 20 cm
b) 34 cm
c) 44 cm
d) 50 cm
4. The area of a rhombus is $240 \mathrm{~cm}^{2}$ and one of the diagonals is 16 cm . Find the another
a) 16 cm
b) 20 cm
c) 30 cm
d) 36 cm
5. If a cuboidal box has height, length and width as $20 \mathrm{~cm}, 15 \mathrm{~cm}$ and 10 cm respectively. Then its total surface area is
a) $1100 \mathrm{~cm}^{2}$
b) $1200 \mathrm{~cm}^{2}$
c) $1300 \mathrm{~cm}^{2}$
d) $1400 \mathrm{~cm}^{2}$
6. The height of a cylinder whose radius is 7 cm and the total surface area is $968 \mathrm{~cm}^{2}$ is
a) $\mathbf{1 5} \mathrm{cm}$
b) 17 cm

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
c) 19 cm
d) 21 cm
7. The height of a cuboid whose volume is $275 \mathrm{~cm}^{3}$ and base area is $25 \mathrm{~cm}^{2}$ is
a) 10 cm
b) $\mathbf{1 1 \mathrm { cm }}$
c) 12 cm
d) 13 cm
8. Find the cost of fencing a rectangular park of length 10 m and breath 5 m at the rate of Rs. 10 per meter
a) Rs. 300
c) Rs. 150
b) Rs. 600
d) Rs. 1200
9. If the sides of a triangle are $16 \mathrm{~cm}, 30 \mathrm{~cm}$ and 34 cm , what is its area
a) $240 \mathrm{~cm}^{2}$
b) $120 \mathrm{~cm}^{2}$
c) $260 \mathrm{~cm}^{2}$
d) $272 \mathrm{~cm}^{2}$
10. The radius of a wheel is 22.4 cm . What is the distance covered by the wheel making 500 revolutions
a) 252 m
b) $\mathbf{7 0 4} \mathrm{m}$
c) 353 m
d) 808 m
11. Find the length of the longest pole that can be placed in a room 12 m long, 8 m broad and 9 m high.
a) 16 m
b) $\mathbf{1 7} \mathrm{m}$
c) 18 m
d) 19 m
12. The area of a trapezium is
a) $\frac{1}{2}$ (sum of parallel sides)Xheight
b) 2(sum of parallel sides)Xheight
c) (sum of parallel sides)Xheight
d) $\frac{1}{2}($ sum of parallel sides $)+$ height
13. The area of rhombus is
a) side X side
c) $d_{1}+d_{2}$
b) $d_{1} X d_{2}$
d) $\frac{1}{2} X d_{1} X d_{2}$
14. The area of 4 walls of the room are
a) $2(l b+b h+h l)$
b) $2 l(h+b)$
c) $2(l b X b h X h l)$
d) $\mathbf{2 h}(\boldsymbol{l}+\boldsymbol{b})$
15. If the side of the cube is 2 m , then the surface area of the cube is
a) $\mathbf{2 4} \mathrm{m}^{2}$
b) $8 \mathrm{~m}^{2}$
c) $4 \mathrm{~m}^{2}$
d) $12 \mathrm{~m}^{2}$
16. $1 \mathrm{~m}^{3}$ is
a) 10 L
b) 100 L
c) 1000 L
d) 10000 L
17. $1 \mathrm{ml}=$
a) $1 \mathrm{~cm}^{3}$
b) $10 \mathrm{~cm}^{3}$
c) $100 \mathrm{~cm}^{3}$
d) $1000 \mathrm{~cm}^{3}$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
18. A perimeter of rhombus is 200 cm and one of its diagonal is 60 cm . Find the other diagonal.
a) 260 cm
c) 80 cm
b) 140 cm
d) None of these
19. The length and breadth of a rectangle are in the ratio $3: 2$. If the area of the rectangle is $726 \mathrm{~m}^{2}$, find its perimeter.
a) $\mathbf{1 1 0} \mathrm{m}$
c) 220 m
b) 55 m
d) None of these.
20. Length and breadth of a rectangular field are 25 m and 15 m respectively. Find the barbed wire required to fence the field.
a) 40 m
c) 160 m
b) 80 m
d) None of these
21. A cylindrical tank has a capacity of $5632 \mathrm{~m}^{3}$. If the diameter of its base is 16 m , find its depth
a) 66 m
b) 30 m
c) 26 m
d) 28 m
22. What is the area of an equilateral triangle of side 16 cm ?
a) $48 \sqrt{3} \mathrm{~cm}^{2}$
b) $128 \sqrt{3} \mathrm{~cm}^{2}$
c) $9.6 \sqrt{3} \mathrm{~cm}^{2}$
d) $64 \sqrt{3} \mathrm{~cm}^{2}$
23. The cured surface area of a right circular cone of height 15 cm and base diameter 16 cm is
a) $60 \pi \mathrm{~cm}^{2}$
b) $68 \pi \mathrm{~cm}^{2}$
c) $120 \pi \mathrm{~cm}^{2}$
d) $136 \pi \mathrm{~cm}^{2}$
24. The height of a right circular cone whose radius is 5 cm and slant height 13 cm will be
a) $\mathbf{1 2} \mathrm{cm}$
b) 10 cm
c) 13 cm
d) 5 cm
25. A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is
a) $3 x \mathrm{~cm}$
b) x cm
c) $4 x \mathrm{~cm}$
d) $2 x \mathrm{~cm}$
26. What is the volume of a sphere whose radius is 3 cm ?
a) $24 \pi \mathrm{~cm}^{3}$
b) $36 \pi \mathrm{~cm}^{3}$
c) $30 \pi \mathrm{~cm}^{3}$
d) $27 \pi \mathrm{~cm}^{3}$
27. What is the curved surface area of a cone of radius 3 cm and height 4 cm ?
a) $14 \pi \mathrm{~cm}^{2}$
b) $15 \pi \mathrm{~cm}^{2}$
c) $16 \pi \mathrm{~cm}^{2}$
d) $17 \pi \mathrm{~cm}^{2}$

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Udoji Maratha Boarding Campus, Near Pumping Station, Gangapur Road, Nashik-13.
RSM POLY Affiliated to MSBTE Mumbai, Approved by AICTE New Delhi, DTE Mumbai \& Govt. of Maharashtra, Mumbai.
28. The perimeter of a triangular field is 144 m and the ratio of the sides is $3: 4: 5$. The area of the field is
a) $864 \mathrm{~m}^{2}$
c) $468 \mathrm{~m}^{2}$
b) $824 \mathrm{~m}^{2}$
d) None of these
29. The area of an isosceles triangle having base x cm and one side y cm is
a) $\frac{x}{2} \sqrt{\frac{4 y^{2}-x^{2}}{4}} \mathrm{~cm}^{2}$
c) Both
b) $\frac{x}{2} \sqrt{\frac{4 x^{2}-y^{2}}{4}} \mathrm{~cm}^{2}$
30. One side of an equilateral triangle is 30 cm . Its area is
a) $225 \sqrt{3} \mathrm{~cm}^{2}$
b) $112.5 \mathrm{~cm}^{2}$
c) $225 \sqrt{2} \mathrm{~cm}^{2}$
d) $225 \mathrm{~cm}^{2}$

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

Position in Question Paper

Total Marks-20
Q.1. f) 2-Marks.
Q.1. g) 2-Marks.
Q.2. d) 4-Marks.
Q.6. a. i) 3-Marks.
Q.6. a. i) 3-Marks.
Q.6. b) 6-Marks.

Descriptive Question

Measures of Dispersion:

The measure of dispersion indicates the scattering of data. In other words, Dispersion is the extent to which values in distribution differ from the average of the distribution. It gives an idea about the extent to which individual items vary from one another and from the central value.

Measures of Dispersion are:

The Range (Absolute Measure)
The Mean Deviation from (i) Mean, (ii) Median (Absolute Measure)
The Standard Deviation (Absolute Measure)
The Variance (Relative Measure)

The Range: -

For Ungrouped Data:

The range is the difference between the highest and lowest values in the set of data
Let $\mathrm{L}=$ Largest value of the observation in the given set of data.
$S=$ Smallest value of the observation in the given set of data.

$$
\text { Range }=\text { Largest Value }- \text { Smallest Value }=\mathrm{L}-\mathrm{S}
$$

For Grouped Data:

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

The range is the difference between the upper limit of highest class and the lower limit of the lowest class

$$
\text { Range }=\{\text { Upper limit of highest class }\}-\{\text { Lower limit of lowest class }\}
$$

Co-efficient of Range:

$$
\text { Coefficient of Range }=\frac{\text { Range }}{\text { Sum of the highest and the lowest values }}
$$

Q.1) Find the range and co-efficient of range of the data:

50, 90, 120, 40, 180, 200, 80 ($\mathbf{W}-\mathbf{1 3}, \mathbf{W}-17$)
Q.2) Find the range and co-efficient of range of the data:
$120,50,90,100,180,200,150,40,80$ (S-18)
Q.3) Find the range of the data:
$14,18,22,35,42,44,8,7,5$ and $2(\mathbf{W}-18)$
Q.4) Find the range and co-efficient of range
$40,52,47,28,45,36,47,50(\mathbf{S - 1 2}, \mathbf{S - 1 9})$
Q.5) Find the range and co-efficient of range of the data:
$3,7,11,2,16,17,22,20,19$ (W-19)
Q.6) Find range and coefficient of range of the data:
$3,6,10,1,15,16,21,19,18$ (S.Q.P, S-13)
Q.7) Find the range of the data: ($\mathbf{W}-\mathbf{1 4}$)
$2,3,1,10,6,31,17,20,24$
Q.8) Find the range of the following data: (S-16) $800,725,750,900,925,910,1000,790,870,920$
Q.9) Calculate the range from the following data: (W-15)

Weight on Kg: 70, 75, 69, 80, 85, 83, 65, 89, 73, 84, 90
Q.10) Calculate the range and the co-efficient of range for the following data: (W-17)

Class	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$
Frequency	4	16	38	12	10

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.11) Calculate the range and coefficient of range from the following data: (S-18, W-19)

Marks	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$
No. of Students	6	10	16	14	8	4

Q.12) Find range and coefficient of range for the following data: (S-19)

C.I	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
\mathbf{F}	15	25	13	17	10

Q.13) Calculate the range and coefficient of range from the following distribution:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of Student	8	12	10	15	5

The Mean Deviation:

It is the arithmetic mean of all the absolute deviations from any one its average.
Mean Deviation $=\frac{\sum\left|d_{i}\right|}{N}$
Where $\left|d_{i}\right|=\left|x_{i}-\bar{x}\right| \quad$ where $\bar{x}=$ arithmetic mean
OR
$=\left|x_{i}-M\right| \quad$ where $M=$ Median

For Raw Data:

Mean Deviation about Mean $=\frac{\sum\left|x_{i}-\bar{x}\right|}{N}$
Where $\bar{x}=$ Mean of N observations.
$\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{\text { Total no.of observations }}=\frac{\sum x_{i}}{N}$
Mean Deviation about Median $=\frac{\Sigma\left|x_{i}-M\right|}{N}$
Where $M=$ Median of N observations.
Let x be a variable with N number of observations and these observations are arranged in ascending order.

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
(i) If $\mathrm{N}=$ even number, then

Median $=\frac{\left(\frac{N}{2}\right)^{\text {th }} \text { place observation }+\left(\frac{N}{2}+1\right)^{\text {th }} \text { place observation }}{2}$
(ii) If $\mathrm{N}=$ odd number, then

Median $=\left(\frac{N+1}{2}\right)^{t h}$ place observation
Q.14) Calculate the Mean Deviation about the mean of the following data:
$3,6,5,7,10,12,15,18$ (S-18)
Q.15) Calculate the Mean Deviation about the mean of the following:
$12,6,7,3,15,10,18,5$
Q.16) Calculate the Mean Deviation about (i) Mean (ii) Median in respect of the marks obtained by nine students given below.
Marks (out 25): 7, 4, 10, 9, 15, 12, 7, 9, 7
Q.17) Calculate the Mean Deviation about the mean of the digits

$$
1,2,3,4,5,6,7,8,9
$$

For Discrete Frequency Distribution:

Mean Deviation about Mean $=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{\sum f_{i}}=\frac{\sum f_{i}\left|d_{i}\right|}{N}$
where $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{\sum f_{i} x_{i}}{N}$
$N=\sum f_{i}$
Mean Deviation about Median $=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}=\frac{\sum f_{i}\left|d_{i}\right|}{N}$
Q.18) Calculate the Mean Deviation about (i) mean (ii)median of the following distribution (S-15)

$\boldsymbol{x}_{\boldsymbol{i}}$	3	4	5	6	7	8
$\boldsymbol{f}_{\boldsymbol{i}}$	4	9	10	8	6	3

Q.19) Calculate the Mean Deviation about mean for the following data. (W-15)

Marks	3	4	5	6	7	8
No. of Students	1	3	7	5	2	2

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.20) Calculate the Mean Deviation about (i) mean (ii)median of the following data:

$\mathbf{x}_{\mathbf{i}}$	10	11	12	13	14
$\mathbf{f}_{\mathbf{i}}$	3	12	18	12	3

For Grouped Frequency Distribution:

Mean Deviation about Mean $=\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{\sum f_{i}}=\frac{\sum f_{i}\left|d_{i}\right|}{N}$
where $\mathrm{x}_{\mathrm{i}}=$ Mid-value or class mark.
$\mathrm{x}_{\mathrm{i}}=\frac{\text { Upper boundary }+ \text { Lower boundary }}{2}$
where $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{\sum f_{i} x_{i}}{N}$
$N=\sum f_{i}$
Mean Deviation about Median $=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}=\frac{\sum f_{i}\left|d_{i}\right|}{N}$
where $\mathrm{M}=$ Median of distribution
Median $=\mathrm{M}=l_{1}+\frac{\left(\frac{N}{2}-f_{c}\right)}{f_{m}} X c$
where $l_{1}=$ Lower boundary of median class.
$f_{c}=$ Cumulative Frequency Less Than previous to median class.
$f_{m}=$ Frequency of median class.
$\mathrm{c}=$ Class width.
$\mathrm{N}=$ Total Frequency.
Q.21) Find mean of the following data: (W-18)

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	3	5	8	3	1

Q.22) Find mean for the following data: (W-18)

Class Interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	6	10	18	9	3

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.23) Find the mean deviation from (i) mean (ii) median of the following distribution: (S-13, S-14, S-19)

C.I	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
$\mathbf{f}_{\mathbf{i}}$	5	8	15	16	6

Q.24)

Class Interval	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	6	10	18	9	3

Find the mean deviation from (i) mean (ii)median of the following: (W-10)
Q.25) Find mean deviation from (i) mean (ii)median. (S-16, W-16)

Weight (in gms)	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
No. of Items	7	12	16	25	19	15	6

Q.26) Calculate the mean deviation about mean for the following data: (W-14)

Expenditure	$40-59$	$60-79$	$80-99$	$100-119$	$120-139$
No. of families	50	300	500	200	60

The Standard Deviation (S.D.):

The standard deviation is defined as the square root of the mean of the squares of the deviations from mean.

The Variance:

The square of standard deviation is called the variance

Co-efficient of S.D.:

The rate of change of S.D. with respect to mean is called co-efficient of S.D.
Co-efficient of S.D. $=\frac{\sigma}{\text { Mean }}=\frac{\sigma}{\bar{x}}$

Co-efficient of Variance:

Co-efficient of Variance $=\frac{\sigma}{\bar{x}} X 100$, where $\bar{x}=$ Mean, $\sigma=S . D$.
Note: - To compare the consistency (variability) of different groups, we compare their co-efficient of variance. A group of data having

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
higher co-efficient of variance is less consistent (or more variable) and a group of data having lower co-efficient of variance is more consistent (or less variable)

For Raw Data:
S.D. $=\sigma=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N}}=\sqrt{\frac{\sum d_{i}{ }^{2}}{N}}$ where $d_{i}=x_{i}-\bar{x}$ and $\bar{x}=\frac{\sum x_{i}}{N}$

Variance $=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N}=\frac{\sum d_{i}{ }^{2}}{N}$ where $d_{i}=x_{i}-\bar{x}$ and $\bar{x}=\frac{\sum x_{i}}{N}$
Q.27) Compute the standard deviation and co-efficient of variance for

$$
15,22,27,11,9,21,14,9(\mathbf{W}-17)
$$

Q.28) Compute standard deviation for the following data:

$$
1,2,3,4,5,6,7(\mathbf{W}-19)
$$

Q.29) Find the standard deviation for the following data:
$49,63,46,59,65,52,60,54$
Q.30) Calculate S.D. and variance of the following data:
$25,50,30,70,42,36,48,34,60$

For Discrete Frequency Distribution:

S.D. $=\sigma=\sqrt{\frac{\sum f_{i} x_{i}{ }^{2}}{N}-(\bar{x})^{2}}$

Variance $=\frac{\sum f_{i} x_{i}^{2}}{N}-(\bar{x})^{2}$
Q.31) Calculate S.D. from the following data:

Marks	5	15	25	35	45	55
No. of Students	10	20	30	50	40	30

For Grouped Frequency Distribution:

S.D. $=\sigma=\sqrt{\frac{\sum f_{i} d_{i}^{2}}{N}-\left(\frac{\sum f_{i} d_{i}}{N}\right)^{2}} X C$

Variance $=\sigma^{2}$
Q.32) Find mean, standard deviation and coefficient of variance of the following: (W-17, S-18, W-18)

Class:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency:	3	5	8	3	1

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.33) Calculate standard deviation and coefficient of variance of the following table: (S-19)

Marks Below	5	10	15	20	25
No. of Students	6	16	28	38	46

Q.34) Find the mean, standard deviation and coefficient of variance of the following data: (S-14, S-16, W-19)

Class-Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	14	23	27	21	15

Q.35) Calculate the standard deviation and variance for following distribution. (S-13, W-13, S-17)

Class Interval	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	3	5	9	15	20	16	10	2

Q.36) Calculate the standard deviation from the frequency table given below: (W-16)

Rainfall	$70-$	$80-$	$90-$	$100-$	$110-$	$120-$	$130-$	$140-$
	80	90	100	110	120	130	140	150
No. of places	6	7	12	19	21	18	11	6

Q.37) Find the standard deviation for the following: (W-15)

C.I	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
$\mathbf{f}_{\mathbf{i}}$	20	130	220	70	60

Q.38) Calculate the standard deviation and coefficient of variation from the following data: (S-15)

Wages in Rs.	$55-65$	$65-75$	$75-85$	$85-95$	$95-105$	$105-115$	$115-125$
No. of Workers	10	12	15	20	14	7	2

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
Q.39) If the coefficient of variation of certain data is 5 and mean is 60 .

Find the standard deviation. (W-17)
Q.40) If the coefficient of variation of a certain distribution is 75% and standard deviation is 24 , find its mean. ($\mathbf{S}-\mathbf{1 8}$)
Q.41) If mean is 34.5 and standard deviation is 5, find the coefficient of variance. (W-18)
Q.42) The two sets of observations are given below:

Set-I	Set-II
$\bar{x}=82.5$	$\bar{x}=48.75$
$\sigma=7.3$	$\sigma=8.35$

Which of two sets is more consistent? (W-17, W-18, S-19, W-19)
Q.43) If mean is 82 and standard deviation is 7, find the coefficient of variance. (W-19)
Q.44) The data of run scored by two batsman A \& B in five one day matches is given below:

Batsman	Average run scored	S.D.
A	44	5.1
B	54	6.31

State which batsman is more consistent? (S-18)
Q.45) In two factories A and B, engaged in the same industry, in the area, the average weekly wages (in Rs.) and the S.D. are as follow:

Factory	Average Wages	S.D.
A	34.5	5.0
B	28.5	4.5

Which factory A or B is more consistent? (S-16, W-16)
Q.46) From the following data investigate which set is more consistent? (S-17)

Set	A.M $=\bar{x}$	S.D. $=\sigma$
Set-I	83.4	5.9
Set-II	51.85	7.45

Q.47) The runs scored by two batsman A \& B in 5 one day matches are given below:(S-12)
Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

A	48	50	39	46	37
B	50	52	60	55	53

Who is more consistent? Why?
Q.48) The scores of two batsmen A and B in ten innings during a certain season as under: (W-14)

\mathbf{A}	32	28	47	63	71	39	10	60	96	14
\mathbf{B}	19	31	48	53	67	90	10	62	40	80

Find which of two batsmen is more consisting in scoring
Q.49) An analysis of monthly wages paid to the workers in two firms A and B belonging to the same industry gives the following results:

	Firm-A	Firm-B
Average monthly Wages (in Rs.)	186	175
Variance of distribution of wages (in Rs.)	81	100

In which firm is there greater variability?

MCQ Question

(Total number of Question=Marks*3=20*3=60)
Note: Correct answer is marked with bold.

1. The total of all the observations divided by the number of observations is called
a) Variance
c) The range
b) The mean
d) The standard deviation
2. Find the mean of the numbers $5,11,2,12,4,2$
a) 4.1
b) 6
c) 4.5
d) 4
3. Find the median of the data $2,8,10,12,56,9,5,2,4$
a) 8
b) 12
c) 10
d) 56
4. The maximum value in the class limit is called
a) Primary limit
c) Lower limit
b) Upper limit
d)Secondarylimit

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
5. A cumulative frequency table is also known as
a) Data
c)Less than C.F.Distribution
b) Frequency distribution
d) Frequency polygon
6. The average of lower and upper class limits is called
a) Class boundary
c) Class mark
b) Class frequency
d) Class limit
7. Find the range of the data $8,10,15,25,30,40,12,20,19$
a) 24
b) 22
c) 32
d) 48
8. Find the median of the following set of points $15,14,10,8,12,8,16,13$
a) 12
b) 12.5
c) 13
d) 15
9. The difference between the highest and lowest values in the set of data is called
a) range
c) standard deviation
b) mean deviation
d) variance
10. Co-efficient of range $=$?
a) $\frac{L+S}{L-S}$
b) $L-S$
c) $\frac{L-S}{L+S}$
d) $L+S$
11. Find range of distribution $160,210,208,200,290,250$
a) $\mathbf{1 3 0}$
c) 160
b) 290
d) None of these
12. Find the coefficient of range of the following data
$59,46,30,23,27,40,52,35,29$
a) 26
b) 0.44
c) 0.84
d) 0.76
13. Find the range for the following distribution

Maximum temperature	$25-26$	$27-28$	$29-30$	$31-32$	$33-34$	$35-36$
No. of days	2	11	12	10	4	1

a) 13
b) 10
c) 11
d) 12
14. The arithmetic mean of all the absolute deviations from any one of its averages is called
a) range
c) standard deviation
b) mean deviation
d) variance
15. The difference between highest and lowest observation is 20 and coefficient of range is 0.077 , then sum of highest and lowest value is
a) 210
b) 220
c) 260
d) 240

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
16. Find the mean deviation about the mean for the following data $5,6,7,8,6,9,13,12,15$ is
a) 1.5
b) 3.2
c) 2.89
d) 5
17. Find the mean deviation about the mean for the following data

$\boldsymbol{x}_{\boldsymbol{i}}$	2	3	4	5	6	7	8
$\boldsymbol{f}_{\boldsymbol{i}}$	5	2	3	4	5	4	2

a) 2.3
b) 3.4
c) 4
d) 1.66
18. What is the standard deviation for the data given
$5,10,7,12,0,20,15,22,8,2$
a) 6.89
b) 10.1
c) 7.26
d) 9
19. what is the variance of the data set? $86,49,63,90,82,98,36$
a) 72
b) 21.4
c) 457.4
d) 395.7
20. The square root of the mean of the squares of the deviations from mean is called
a) range
c) mean deviation
b) standard deviation
d) variance
21. Standard deviation is denoted by
a) σ
b) \bar{x}
c) ρ
d) η
22. The square of standard deviation is called
a) coefficient of S.D.
c) variance
b) coefficient of variance
d) None of these
23. Which of the following is not measures of dispersion?
a) range
c) variance
b) standard deviation
d) median
24. Calculate mean of the following distribution

Marks	3	4	5	6	7	8
No. of students	1	3	7	5	2	2

a) 5.5
c) 3.5
b) 6.5
d) None of these
25. Calculate mean of the following distribution

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of students	5	8	15	16	6

a) 25
c) 15
b) 27
d) None of these
26. If mean is 34.5 and standard deviation is 5 . Find the coefficient of variance.

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) $\mathbf{1 4 . 4 9 \%}$
c) 75%
b) 5%
d) None of these
27. If the coefficient of variation of certain data is 5 and mean is 60 . Find the standard deviation.
a) 9
b) 5
c) 3
d) 4
28. If co-efficient of variation of a distribution is 75% and standard deviation is 24 . Find its mean.
a) 45
b) 31
c) 30
d) 32
29. The ratio of standard deviation to mean is called
a) coefficient of S.D.
c) variation
b) coefficient of variation
d) None of these
30. Formula to calculate coefficient of variation is
a) $\frac{\text { standard deviation }}{\text { mean }}$
c) $(S . D .)^{2}$
b) $\frac{\text { standard deviation }}{\text { mean }} X 100$
d) (S.D.X mean)
31. Which one is the formula to calculate standard deviation for ungrouped data?
a) $\sqrt{\frac{\sum \boldsymbol{f}_{i} \boldsymbol{d}_{i}{ }^{2}}{\sum \boldsymbol{f}_{i}}}$
c) $\sqrt{\frac{\sum f_{i} d_{i}}{\sum f_{i}}}$
b) $\frac{\sum f_{i} d_{i}{ }^{2}}{\sum f_{i}}$
d) None of these
32. Which one is the formula to calculate mean by step deviation method?
a) $\frac{\sum x_{i}}{N}$
c) $\boldsymbol{a}+\left(\frac{\sum \boldsymbol{f}_{i} u_{i}}{\sum \boldsymbol{f}_{\boldsymbol{i}}} \boldsymbol{X} \boldsymbol{c}\right)$
b) $\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
d) None of these
33. Find the coefficient of variation of $24,26,33,37,29,31$
a) 42%
b) 11.9%
c) 14.4%
d) 21.4%
34. The total marks scored by two students Snehal and Divya in 5 subjects are 460 and 480 with Standard deviation 4.6 and 2.4 respectively. Who is more consistent in performance?
a) Snehal
c) Both of them
b) Divya
d) None of these
35. The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the coefficient of variation.
a) $\mathbf{5 2 \%}$
b) 42%
c) 65%
d) 75%

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
36. The standard deviation and coefficient of variation of a data are 1.2 and 25.6 respectively. Find the value of mean.
a) 7.69
c) 4.69
b) 2.69
d) None of these
37. If the mean and coefficient of variation of a data are 15 and 48 respectively. Find the standard deviation.
a) 3.6
b) 7.2
c) 2.6
d) 6
38. The difference between highest and lowest observation is 20 and coefficient of range is 0.077 then the sum of highest and lowest value is
a) 210
b) 220
c) 260
d) 240
39. Compute the standard deviation for $15,22,27,11,9,21,14,9$
a) 6.22
c) 3.5
b) 4.25
d) None of these
40. Which one is the formula to calculate standard deviation for grouped frequency distribution
a) $\frac{\sum f_{i} d_{i}}{\sum f_{i}}$
b) $\frac{\sum f_{i}\left|d_{i}\right|}{\sum f_{i}}$
c) $\sqrt{\frac{\sum f_{i}\left|d_{i}\right|}{\sum f_{i}}}$
d) $\sqrt{\frac{\sum f_{i} d_{i}{ }^{2}}{\sum f_{i}}-\left(\frac{\sum f_{i} d_{i}}{\Sigma f_{i}}\right)^{2}} \boldsymbol{X} \boldsymbol{c}$
41. The data of run scored by two batsman A \& B in five one day matches is given below

Batsman	Average run scored	S. D
A	44	5.1
B	54	6.31

State which batsman is more consistent?
a) Batsman A
c) Both of these
b) Batsman B
d) None of these
42. In a grouped frequency distribution, the class intervals are $0-10,10-20,20-30,30-40$, then the class width is
a) 10
b) 15
c) 20
d) 30
43. Calculate standard deviation from the following data.

$\boldsymbol{x}_{\boldsymbol{i}}$	20	22	25	31	35	40	42	45
$\boldsymbol{f}_{\boldsymbol{i}}$	5	12	15	20	25	14	10	6

a) 7.3
b) 7.32
c) 7.31
d) 7.35
44. Calculate mean deviation about the mean of the following distribution

Prepared By: Prof. V.R.Patil (Department of Science and Humanity)

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik

$\boldsymbol{x}_{\boldsymbol{i}}$	3	4	5	6	7	8
$\boldsymbol{f}_{\boldsymbol{i}}$	4	9	10	8	6	3

a) 1.195
c) 4.65
b) 6.543
d) None of these
45. The mean and variance of 5 items are 64 and 68 respectively. If two more of values 62 and 66 are added to the data, find the new variance of 7 items.
a) 86
c) 25
b) 49.71
d) None of these
46. Find the range and coefficient of range of the following data

C.I	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$
\mathbf{F}	15	25	13	17	10

a) Ran. $=50$, C.O.R. $=0.725$
c) Ran. $=60$, C.O.R. $=0.725$
b) Ran. $=50$, C.O.R. $=0.65$
d) Ran. $=65$, C.O.R. $=0.725$
47. Compute standard deviation of the data $19,23,16,7,18,35,14,24$
a) 6.5
b) 7.93
c) 2.45
d) $\mathbf{8 . 2 2}$
48. Find the standard deviation of the following data

Class- Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	14	23	27	21	25

a) 9.32
c) $\mathbf{1 2 . 8 6}$
b) 4.76
d) None of these
49. Calculate the mean deviation about the mean of the digits
$1,2,3,4,5,6,7,8,9$
a) $\mathbf{2 . 2 2}$
b) 4.25
c) 1.25
d) 3.5
50. Find standard deviation from the following data $15,22,27,11,9,21,14,9$
a) 4.89
c) 6.36
b) 2.09
d) None of these
51. The Arithmetic Mean of runs scored by two batsmen A and B in a series of 10 innings are 50 and 12 respectively. The standard deviations of their runs are 15 and 2 respectively. Who is most consistent?
a) Batsman A
c) Both of these
b) Batsman B
d) None of these
52. Which is the formula to calculate Mean Deviation about mean

Maratha Vidya Prasarak Samaj's Rajarshi Shahu Maharaj Polytechnic, Nashik
a) $\frac{\sum x_{i}}{N}$
c) $\frac{\sum f_{i}\left|x_{i}-\bar{x}\right|}{\sum f_{i}}$
b) $\frac{\sum d_{i}{ }^{2}}{N}$
d) None of these
53. Find the variance of the data. $0,10,20,30,40,50$
a) 291.67
b) 290
c) 230
d) 212
54. A batsman scores runs in 10 innings as $38,70,48,34,42,55,63,46,54$ and 44 . Then the mean score is
a) 4.94
b) 49.4
c) 494
d) 0.494
55. The following values are calculated in respect of marks of the students of Sections A and B of class X are

	Section A	Section B
Mean	85	92
Variance	81	64

The marks of which section have more variability?
a) Section B
b) Section \mathbf{A}
c) Both sections are equal variable
d) Cannot be determined
56. The standard deviation of first 10 multiples of 4 is
a) 7
b) 8
c) 11.5
d) 14
57. The mean of a distribution is 14 and the standard deviation is 5 . What is the value of the coefficient of variation?
a) 60.4%
b) 80.3%
c) $\mathbf{3 5 . 7 \%}$
d) 27.8%
58. If a series, coefficient of variation is 20% and arithmetic mean is 40 , the value of standard deviation will be
a) 4
c) 8
b) 6
d) None of these
59. If arithmetic mean is 25 and standard deviation is 6.25 , the coefficient of variation will be
a) 50%
b) 20%
c) $\mathbf{2 5 \%}$
d) 30%
60. The mean is denoted by
a) \bar{x}
b) σ
c) η
d) ϱ

